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1Yeditepe University, Istanbul, Turkey
2Politecnico di Milano, DEIB, Milan, Italy

3CNR-IMATI, Milan, Italy

Abstract

Blood is fundamental in several care treatments and surgeries, and plays a crucial role in

the health care system. It is a limited resource, as it can be produced only by donors and its

shelf life is short; thus, the blood donation (BD) system aims at providing adequate supply

of blood bags to transfusion centers and hospitals. An effective collection of blood bags from

donors is fundamental for adequately feeding the entire BD system and optimizing blood

usage. However, despite its relevance, donation scheduling is only marginally addressed

in the literature. In this paper we consider the Blood Donation Appointment Scheduling

(BDAS) problem, aiming at balancing the production of the different blood types among days

in order to provide a quite constant feeding of blood bags to the BD system. We propose a

framework for the appointment reservation that accounts for both booked donors and donors

arriving without a reservation. It consists of an offline Mixed Integer Linear Programming

(MILP) model for preallocating time slots to blood types, and of an online prioritization

policy to assign a preallocated slot when the donor calls to make the reservation.
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1. Introduction

Blood supply is a key point for all health care systems, as blood is necessary for several

care treatments and surgical interventions. For example, in 2012, the annual need for blood

was about 10 million units in the USA, 2.1 in Italy, and 2 in Turkey. Blood is also a limited

resource because, at present, it cannot be produced in laboratory but only by humans.

Thus, in Western countries, blood is usually collected from donors, i.e., unpaid individuals

who donate their blood voluntarily. Further, its short shelf life limits the period between

donation and utilization, thus preventing long term storage.

Blood is provided through the Blood Donation (BD) system, which is in charge of provid-

ing an adequate supply of blood bags to transfusion centres and hospitals. Due to the short

shelf life, BD system should meet the overall blood demand from hospitals and transfusion

centres, but at the same time it should follow the temporal profile of the demand to avoid

blood shortage and wasted bags. The BD supply chain can be divided into four steps, as

shown in Figure 1: collection, transportation, storage and utilization (Sundaram and San-

thanam, 2011). Blood is first collected: donors are registered and visited by a physician to

assess their eligibility for donation and, if eligible, they make the donation. Once the blood is

gathered, tests are performed on each blood bag to prevent infectious diseases. Afterwards,

blood bags are transported and stored. Blood components are then distributed to hospitals

and transfusion centres based on their inventory levels. Finally, blood is transferred to the

end users (the patients) for transfusion.

In this paper, we focus on the blood collection step, which represents the first (and most

critical) step of the BD supply chain. Not only increasing the number of donations improves

the throughput of the the BD system, but also having an effective management of donors’

arrivals among the days may improve the performance of the system and optimize the daily

production of blood bags with respect to the demand. On the contrary, an unbalanced

feeding of blood bags may undermine the entire BD supply chain and result in alternating

periods of blood shortage and wasted bags.

Several blood collection centres are starting to implement a reservation system. In fact,

reserving the donation appointment can reduce donors’ waiting time and, thus, guarantee

a better service to donors, which may help in increasing the number of donors and the

frequency of donation. Moreover, by appropriately addressing donors to a suitable day,

reservation may also balance the production of blood bags among the days. In any case,

centres also accept donors without reservation not to refuse any possible donation, because

of the high need for blood bags and to prevent donors from feeling that their donation is

not important. Thus, generally speaking, both booked and non-booked donors are usually

present in the collection centres, even though the effort is to increase the rate of booked

ones. So far, appointments are manually assigned in the majority of collection centres where

reservation is possible. Manual management may be able to reduce donors’ waiting times
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Figure 1: Steps of the BD supply chain.

and to take their preferences into account; however, it is short-sighted and may prevent from

effectively balancing blood bag production.

In this work, we propose an appointment scheduling system for blood donation to bal-

ance the production of blood bags of the different types (combination of group and Rhesus

factor) among days, while taking into account both booked and non-booked donors. The

proposed architecture for planning the assignments consists of two phases, i.e., an offline

preallocation of time slots for donation and an online allocation of them, where a time slot

is as an operational or service time interval suitable for a donor. The preallocation phase

is responsible of reserving slots to the blood types, while the allocation phase is responsible

of assigning a suitable preallocated slot to each donor when he/she calls for reservation.

In other words, the preallocation phase prepares a number of spare slots for the different

blood types, which are then used for the successive online booking phase. The architecture

is based on a Mixed Integer Linear Programming (MILP) model for the preallocation phase

and a prioritization policy for the allocation phase.

Although the problem shares some features with other health care related appointment

scheduling problems, balancing the production is not a common objective. Moreover, the

characteristics of the BD system make the donation scheduling different from other appoint-

ment scheduling systems in different fields. Thus, to the best of our knowledge, this paper

is the first attempt to deal with what we can define as the Blood Donation Appointment

Scheduling (BDAS) problem. In this paper, we particularly consider the case of the Milan

Department of the Associazione Volontari Italiani Sangue (AVIS), denoted as AVIS Milan

in the following, which can be considered as a general blood collection centre since it shares

many features in terms of donors, activities and management with several other centres.

Thus, the approach proposed in this paper can be considered as general and applicable to

other blood collection centers.

The paper is structured as follows. More details about the BDAS problem are reported

in the remainder of this Section. Then, a literature review on BD collection management

and appointment scheduling is presented in Section 2. The proposed architecture for the

BDAS problem is detailed in Section 3, including the MILP preallocation model and the

prioritization policy. An analysis of the MILP preallocation model is further reported in
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Section 4. Finally, the computational tests performed on the AVIS Milan case and the

conclusions are reported in Sections 5 and 6, respectively.

1.1. Problem description

The BD collection phase includes all of the stages between donor’s arrival and the com-

plete preparation of the blood bag. The process starts when the donor arrives at the blood

collection centre. Here, donors are visited by a physician to assess their eligibility for dona-

tion; if eligible, donors make the donation. Once the blood is drawn from an individual, it

undergoes a screening process to be searched for any infectious diseases, and the blood bags

that pass the tests are sent for storage.

Two main aspects are present in the blood collection step. On the one hand, managing

a BD collection centre includes the typical operational problems that are common to several

service providers and other health care facilities (e.g., visit centres, hospitals, emergency

services). Among them, we mention workforce planning, appointment scheduling, demand

prediction, waiting times reduction, service quality improvement, etc. On the other hand,

the goal of a BD collection centre is to produce blood bags and blood products to meet

the demand from the health care system. Thus, an effective management of a collection

centre cannot limit to its internal organization as a service provider, but it must necessarily

account for the production of blood bags. An effective management of blood collection is

firstly necessary to increase the throughput and keep the costs sustainable. However, a more

general view should include an effective management of donors’ arrivals throughout the days

to optimize the daily production of blood bags with respect to the demand. Neglecting this

point may result into an unbalanced feeding of blood bags to the rest of the BD supply

chain, with consequent blood shortage and wasted bags. The first point (throughput and

costs) is sometimes addressed in the literature; on the contrary, more structured strategies

that also include the impact on the whole BD chain are still lacking (see Section 2).

In the practice, appointment scheduling decisions are manually made or supported by

short-sighted tools. Even though these tools are able to reduce donor waiting times and

physician overtimes, and/or to optimize other operational issues, they do not include any

analysis of the daily blood production with respect to the demand while allocating time

slots to donors. Hence, the main goal and benefit of a comprehensive scheduling system is

to combine these contrasting needs: to improve the operational level while optimizing the

produced bags with respect to the demand and its temporal pattern. This is actually the

goal of this paper.

From a management point of view, donors can be mainly divided into two groups: re-

turning donors who donate on a regular basis, and walk-in donors who occasionally donate

or donate for the first time. In any case, a donation can be made after a rest period from

the previous one, which is defined by law. If the blood collection centre has a reservation

system, donors can be further classified into booked and non-booked donors.
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As mentioned, we consider the case of AVIS Milan. AVIS was founded in 1927 and

nowadays is the largest blood donors association in Italy, bringing together over one million

of voluntary blood donors across the country. AVIS Milan covers the territory of Milan and

is in charge of collecting blood for one of the main hospitals in Milan, i.e., the Niguarda

hospital; in the last 4 years, it provided on average about 50 whole blood donations per day,

with a total of about 18000 donations per year.

AVIS Milan is starting to implement a reservation system and currently accepts donors

with and without reservation, the second being the majority at the moment, but it aims

at increasing the rate of the booked donors. Its goal is to produce a constant amount of

blood bags for each blood type due to the fact that the Niguarda hospital is a big hospital

with a lot of elective surgeries and a quite constant amount of emergency requests. The

lack of a constant feeding to the hospital is the actual bottleneck of the entire system in

the practice, based on the discussion with the staff of AVIS Milan. Even some peaks in the

demand may occur in specific periods and conditions, the request from Niguarda hospital to

AVIS Milan is to feed the system with a constant (and possibly high) daily amount of bags

of the different blood types.

The current architecture of the AVIS Milan scheduling system is shown in Figure 2a,

which also shares many features with several blood collection centres. Some donors call

to book the donation day and time slot beforehand, and slots are assigned (booked) until

a maximum percentage of the daily capacity is reached, regardless of blood type. The

daily capacity is expressed in terms of the total physician working time without incurring

overtime. In fact, while AVIS Milan has a large donation room where a seat is quite always

available when a donor arrives, the physician’s visit before donation is the bottleneck of the

system that generates the queue; thus, we consider the physician working time as the scarce

resource and the time slot refers to the time spent for the visit. Some part of the capacity (a

maximum percentage) is usually taken into account when a donation is booked, to preserve

space for non-booked donors; however, to match the donors’ preferences, this threshold can

be extended (overpassed) without penalties. The daily donations are finally given by the

amount of booked and non-booked donors who show up at the blood collection centre.

Historical data from AVIS Milan show that the number of produced bags is not constant

among days. Figure 3a reports the daily number of whole blood bags produced per day, and

Figure 3b the relative percentage of bags with type A Rh+ (data refer to 2013 and 2014,

i.e., two years in which production balancing was not considered). We can observe that the

number of blood bags is not evenly balanced among the days, despite the goal of flattening

the production both in terms of total number of bags per day and for the different blood

types. In particular, AVIS Milan would like avoiding high frequency oscillations, while low

frequency oscillations do not depend on scheduling and cannot be avoided. For example, the

decreased production around days 220-240 in Figure 3a corresponds the month of August
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Figure 2: Current architecture of AVIS Milan (a) and proposed architecture (b).

when people are usually on holiday and they do not donate.

2. Literature review

In literature, there are two main classifications of the BD supply chain and the related

management problems. Sundaram and Santhanam (2011) classify the system based on

the main steps of a blood bag life (as mentioned in the Introduction) while, according to

Pierskalla (2005), the BD supply chain can be classified based on the strategic and tactical

operational decisions.

Many optimization problems are present in managing the BD supply chain, from do-

nation to final utilization of blood bags. Most of them have been largely addressed in the

literature, as underlined by recent surveys; e.g., Beliën and Forcé (2012) reviewed the liter-

ature up to 2010, and Osorio et al. (2015a) presented a structured review on quantitative
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Figure 3: Daily number of whole blood donations in 2013 and 2014 according to the historical information

of AVIS Milan: total number of donations (a) and percentage of type A Rh+ (b).

modeling for BD supply chain. However, different problems received different attention in

the literature and, even though the blood collection step is one of the most important ones

at the operational level, the BDAS problem has been never addressed so far. A literature

analysis on BD supply chain management conducted by Baş et al. (2016) and then updated

up to August 2015, which included 177 papers that are available on Scopus and the other

main scientific databases, shows that only the 1% of the BD management investigations deal

with donor arrival and scheduling.

In the following, we first review the literature dealing with the management of the blood

collection step, and then we survey the literature about appointment scheduling systems.

2.1. Blood collection in the literature

Several management problems arise in the blood collection, which can be classified based

on the planning (e.g., location of blood collection centres and staff dimensioning) or opera-

tional (e.g., appointment scheduling, screening policies, donation prediction) level. Although

problems of both levels have an impact on the entire BD chain, problems occurring at the

operational level have a direct effect on blood shortages and wasted bags. In the follow-

ing, we focus on such level, which is closely related to the appointment scheduling system

developed in this paper.
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Testik et al. (2012) identified donor arrival patterns and employed a queuing network

model of the donation process to dimension the workforce. Alfonso et al. (2012, 2013) pro-

posed Petri net models to describe all relevant donor flows in various blood collection sys-

tems. Michaels et al. (1993) developed a simulation study to evaluate scheduling strategies

for donors who arrive at a Red Cross blood drive, and compared them in terms of mean tran-

sit time to find out the most effective one. Mobasher et al. (2015) coordinated appointment

and pick-up times at blood donation sites to maximize platelet production. Osorio et al.

(2015b) worked on a multi-objective stochastic optimization model for technology selection

and donor assignment. Elalouf et al. (2015) improved the structure of a three-echelon blood

sample collection chain, which includes clinics, centrifuge centres, and a centralized testing

laboratory. More closely to the BDAS problem, Alfonso et al. (2015) presented a simulation-

optimization approach for capacity planning and appointment scheduling in blood collection

systems, accounting for random service times, random arrivals of walk-in donors, and ran-

dom no-shows of scheduled donors. The aim is to simoultaneously maximize donor service

level and minimize system overtime. However, differently from the BDAS problem, they

do not take into account the different blood types and the production balancing, which is

instead our main goal.

Stochastic model to predict the waiting time and other random variables are also avail-

able. Flegel et al. (2000) developed a logistic regression model to compute the donation

probability within a given time frame. Ferguson and Bibby (2002) used a prospective de-

sign to predict the number of future blood donations. Raven et al. (2010) estimated the

blood supply from donations using annual donor retention rates and mean numbers of do-

nations per donor and year. Boonyanusith and Jittamai (2012) investigated donor behavior

patterns and the factors that influence donation decision. Ritika (2014) found a fair clas-

sification technique for donation prediction. Van Dongen et al. (2014) analyzed the factors

that affect the intention to continue donating in new donors. Van Brummelen et al. (2015)

developed a model for estimating the waiting time in blood collection sites, which provides

the total delay time distribution. Fortsch and Khapalova (2016) proposed a Box-Jenkins

method to predict blood demand, aiming at lowering costs and reducing blood wastages.

2.2. Related appointment scheduling systems

Scheduling problems are widely studied in the literature (Gupta and Starr, 2014) and

have been classified according to several criteria (e.g., number and sequence of machines,

processing times, job arrival rates and objective function) for both manufacturing and service

systems, including health care systems.

Effective schedules are widely studied in manufacturing (Pinedo, 2009; Oyetunji, 2009;

Sawik, 2011; Pinedo, 2012; Rahman et al., 2015; Jonsson and Ivert, 2015; Han et al., 2015)

with the goals of meeting due dates, maximizing machine or labor utilization, and minimizing

job lateness, response time, completion time, time in the system, overtime, idle time and
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work-in-process inventory. A review can be found in Framinan and Ruiz (2010).

Scheduling in service systems is different from that in manufacturing, mainly because

the system capacity in manufacturing may exploit inventories. On the contrary, a service is

provided together with its utilization; consequently, service capacity cannot be stored and it

is lost if unused (Ayvaz and Huh, 2010; Zhou and Zhao, 2010). In service systems, customers

want to spend the minimum waiting time and receive good quality service, whereas service

providers want to perform the schedule with the minimum cost. In particular, service systems

try to satisfy the demand through appointments. Thus, appointment scheduling represents

the interface between demand and service provider.

Focusing on health care services, many papers dealing with appointment scheduling are

available in the literature (Liu, 2009; Truong, 2015; Wang and Fung, 2015). The goal is

usually to maximize the number of patients while minimizing waiting times, physician idle

times and overtimes (Gupta and Denton, 2008; Samorani and LaGanga, 2015). Some papers

analyze the negative effects of no-shows in terms of provider underutilization and delayed

patient access (Robinson and Chen, 2010; Liu and Ziya, 2014; Liu, 2016); in such cases,

most of the applied solutions propose overbooking in order to increase the utilization.

The management of the operating theatres has been one of the most studied topics in the

last 60 years (Cardoen, 2010; Hans and Vanberkel, 2012). Other widely studied topics are

nurse scheduling (Burke et al., 2004; Bai et al., 2010; Lim et al., 2012), patient appointments

in ambulatory care (Gupta and Wang, 2012), appointment scheduling in outpatient clinics

(Berg and Denton, 2012), bed assignments in hospitals (Hall, 2012), scheduling of urgent

patients (Gerchak et al., 1996; Klassen and Rohleder, 2003; Torkki et al., 2006), nurse and

surgery scheduling (Beliën and Demeulemeester, 2008), and trade-offs between the cancel-

lation of scheduled elective surgeries to accommodate urgent arrivals (Zonderland et al.,

2010).

Blood collection involves both the features of a service system and those of a production

system. Thus, the BDAS problem cannot be included by the ordinary classification, and

this also explains the lack of BD appointment scheduling systems in the literature.

3. Proposed architecture for the donor appointment scheduling

In this paper we propose a new architecture for the BDAS problem. As mentioned in the

Introduction, the proposed architecture for planning the donations consists of two phases,

i.e., an offline preallocation of time slots for donation based on the blood type, and an online

allocation. The output of the preallocation acts as an input for the allocation, in which the

daily layout of prereserved slots is filled while the donors call for booking. Indeed, the

allocation phase assigns a preallocated slot to each donor, when he/she calls for reservation,

among those prepared in the preallocation phase. Such decomposition in two phases is based

on the evidence that, in order to balance the daily production of all blood types, the slots
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should be assigned in advance to the different types and then the donors should be addressed

to the slots of their specific type.

The list of preallocated slots is refreshed (regenerated) after a certain number of reserva-

tions are received and/or at a fixed frequency (e.g., each day). The number of preallocated

slots which have been converted into reserved slots is fed back to the preallocation phase

(the assigned slots are no longer available and have to be considered as occupied) and the

process is repeated. As a result, the plan for each day is given by the list of booked donors

for that day, together with the number of empty slots that are left free for the non-booked

donors who may arise to donate.

Besides the goal of production balancing, the daily layout of prereserved slots should

meet some other requirements: the total number of slots should be around the expected

number of donors, the slots should respect the proportions of the blood types, and an

appropriate number of spare slots should be preserved for non-booked donors. To meet

these requirements, the future amount of donors (both booked and non-booked) is required

and should be predicted, e.g., based on the available historical data.

The proposed architecture is summarized in Figure 2b. The preallocation phase re-

ceives the expected number of booked and non-booked donors, together with the number

of occupied (already booked) slots, and provides the preallocated slots xb
t (i.e., number of

preallocated slots for blood type b at day t of the time horizon). Then, the allocation phase

uses these preallocated slots to respond to the phone calls for reservation, and updates the

list of occupied slots.

As mentioned before, the preallocation phase is based on a MILP model whereas the

allocation phase on a prioritization policy of the prereserved slots. They are detailed in the

next two subsections.

3.1. Optimization model for the preallocation of slots

The preallocation of the slots is optimized through a MILP model, whose aim is to

preallocate a balanced number of slots for each blood type close to the expected number of

booked donors in the considered time horizon. While doing so, some spare time slots are

left for non-booked donors, and physician overtimes are penalized.

A set of days T represents the considered time horizon, and all days t ∈ T are divided

into a set K of periods. Moreover, the set of blood types is denoted as B. We consider

for each day t and each blood type b a number of slots xb
t to preallocate (non-negative

integer decision variable) and a number of already allocated slots abt coming from previous

reservations (integer parameter).

We assume an expected number db of booked donors for blood type b over T . Thus,

ideally, the summation over T of the already booked slots and of the slots to preallocate

should equal to this value for each blood type, i.e.,
∑

t∈T

(
xb
t + abt

)
= db. However, as

mentioned, we cannot know this value in advance and, so we assume that each db is affected

10



Sets

B set of blood types

T time horizon

K set of time periods ∀t ∈ T

Parameters

db expected number of booked donors over T with blood type b

ε uncertainty associated with db (same ∀b ∈ B)

abt number of already booked donors at day t with blood type b

nb
t expected number of non-booked donors at day t with blood type b

αk fraction of nb
t in period k (same ∀t ∈ T )

ctk overall capacity of physicians (time) in period k of day t

r standard time required for visiting a donor

Rtk time amount for visiting the already booked donors in period k of day t

η maximum variation weight (for the objective function)

δk penalty for overtime in period k (same ∀t ∈ T , for the objective function)

Decision variables

xb
t number of preallocated slots for blood type b in day t

wb
tk number of preallocated slots for blood type b in period k of day t

ybt number of planned bags for blood type b in day t

zbt absolute variation of ybt with respect its average value over T

v maximum of the variations zbt ∀t ∈ T, b ∈ B

ptk physicians’ overtime in period k of day t

Table 1: Sets, parameters and decision variables for the preallocation model.

by uncertainty. To this end, we formalize the uncertainty by imposing that the summation∑
t∈T

(
xb
t + abt

)
can lay in the interval from (1− ε) db to (1 + ε) db for each blood type b,

where ε is an index of the associated uncertainty. In case of low uncertainty, a small ε value

close to 0 can be assumed, whereas higher values up to 1 can be taken in case of highly

uncertain donor arrivals. Forcing the system to allocate a given number of slots (actually

a number in a range) is necessary in the presence of an objective function that aims at

balancing the production of bags among days and avoiding overtimes. In fact, on the one

hand, a perfect balancing with no overtime can be obtained with a null production. On the

other hand, preallocating a number of slots higher than the necessary amount will lead to

several empty slots because of fewer calls for reservation; thus, even though the preallocated

slots are balanced, the actually occupied slots could be unbalanced. Hence, an appropriate

selection of ε value is crucial.

As indicated, an expected amount of slots should be left empty for non-booked donors,
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which is represented by nb
t for blood type b and day t. Since non-booked donors may arrive

in any period k of the day (k ∈ K), the fraction of nb
t for period k is denoted with αk (we

assume the same division ∀t ∈ T ).

The overall capacity of the physicians in period k of day t, without incurring overtime,

is denoted by ctk. The standard time r required for visiting a donor (considered while

allocating new slots xb
t) is assumed to be constant and equal for all donors. In addition, for

the already booked slots abt , a specific service duration can be set for each donor; we denote

by Rtk the total time for the already allocated donors in period k of day t. Note that, at

each day t, the number of already allocated slots abt are grouped by blood type b, while the

associated times Rtk are grouped by period k.

Some additional decision variables are included to model the preallocation problem. The

number of preallocated slots for blood type b in day t and period k is represented by an

non-negative integer variable wb
tk, whose sum over k ∈ K provides xb

t . The overall number

of planned donations for blood type b at day t is ybt , which is given by xb
t + abt + nb

t . The

absolute variation of ybt with respect to its average value over the days t is denoted as zbt .

Finally, the overtime required above the capacity ctk at day t and period k is denoted by

ptk.

Sets, parameters and decision variables are summarized in Table 1. Variables are subject

to the following constraints:

ybt = xb
t + nb

t + abt , ∀t ∈ T , b ∈ B (1)∑
τ∈T

ybτ − ybt |T | ≤ zbt |T |, ∀t ∈ T , b ∈ B (2)

ybt |T | −
∑
τ∈ T

ybτ ≤ zbt |T |, ∀t ∈ T , b ∈ B (3)

v ≥ zbt , ∀t ∈ T , b ∈ B (4)

(1− ε) db ≤
∑
t∈T

(
xb
t + abt

)
, ∀b ∈ B (5)

∑
t∈T

(
xb
t + abt

)
≤ (1 + ε) db, ∀b ∈ B (6)

xb
t =

∑
k∈K

wb
tk, ∀t ∈ T , b ∈ B (7)

r
∑
b∈B

(
wb

tk + αkn
b
t

)
+Rtk ≤ ctk + ptk, ∀k ∈ K, t ∈ T (8)

xb
t ≥ 0, xb

t ∈ N, ∀t ∈ T , b ∈ B

ybt ≥ 0, ybt ∈ N, ∀t ∈ T , b ∈ B

ptk ≥ 0, ∀t ∈ T , k ∈ K

wb
tk ≥ 0, wb

tk ∈ N, ∀k ∈ K, t ∈ T , b ∈ B

12



Constraints (1) compute the number of blood bags ybt for each day t and blood type b.

Constraints (2) and (3) calculate the absolute variation zbt between ybt and its average value

over T , and constraints (4) compute the maximum of such absolute variations. Constraints

(5) and (6) force the total number of slots of type b to be around db, with tolerance ε;

obviously, the number of slots is an integer number, so that the effect of these constraints

is to bound
∑

t∈T

(
xb
t + abt

)
between �(1− ε)db� and �(1 + ε)db	. Constraints (7) calculate,

for each blood type b, the total number of preallocated slots xb
t in day t based on the

wb
tk amounts. Constraints (8) calculate the overtime ptk based on the times for visit and

physicians’ capacity.

In this formulation, we assume that all arriving donors make a donation, that all booked

donors show up at the right period and day, and we do not consider different types of

donations other than the whole blood donation (e.g., apheresis).

The primary objective of the model is to balance the production of each blood type b

among the days, which corresponds to obtaining low zbt values. Moreover, the secondary

goal is to minimize the physicians’ overtimes ptk, where the overtime of each period k ∈ K

is penalized through a specific weight parameter δk. Hence, the following objective function

is considered, which is composed by three terms:

min

{∑
b∈B

∑
t∈T

zbt + ηv|T ||B|+
∑
t∈T

∑
k∈Kt

δkptk

}
(9)

The first two terms (named OF1 and OF2, respectively) balance the production among days

by reducing the absolute variations zbt ; OF1 minimizes the total absolute variation with

respect to the average production, while OF2 minimizes the maximum absolute variation

among all days and all blood types. The third term (named OF3) minimizes the total

weighted physicians’ overtimes. The three terms may be optimized all together, as reported

in (9), or alternatively we can consider only one or two of them. If OF2 is neglected,

constraints (4) can be removed from the model, whereas constraints (8) can be removed if

OF3 is not considered.

Let us focus on the first two terms OF1 and OF2, which both aim at balancing the

production. η is a positive parameter that represents the relative weight of the maximum

absolute variation with respect to the total one: a low value of η favors the total variation,

whereas higher values favor the maximum variation. Parameter v is multiplied by |T | and

|B| to obtain, with η = 1, the same order of magnitude for the two terms. It is common

in optimization problems that both the summation and the maximum of a set of decision

variables are optimized. But, in our case, these two terms may lead to allocate a different

number of slots xb
t , since ybt is given by xb

t + nb
t + abt and the summation

∑
t∈T xb

t + abt is

not constrained to a value but to a range, due to (5) and (6). On the contrary, in several

other problems, the overall amount is generally fixed and just differently allocated. Further

details will be provided in Section 4.
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3.2. Prioritization policy for the online allocation of slots

The goal of the prioritization policy is to decide the best preallocated slot to propose

when a donor calls to make a reservation. However, proposing only one day to the donor is

not enough because the donor may have other constraints and could not accept the proposal.

Thus, it is preferable to propose a list of possible days t and periods k, and let the donor

choose among them. This might increase the donation frequency and the perceived usefulness

of the donation from the donor. Hence, the goal of this second phase is to assign a score

to each slot of the donor’s blood type, such that the slots can be proposed one by one to

the donor in a decreasing order of score until a slot is accepted. This is a good compromise

between donor’s needs (propose several alternatives) and production needs (propose the best

alternative).

Basically, there are two points behind the prioritization of the slots and the assignment

of the score: to fill the first available day and to keep the flexibility of the reservation

system. The first point requires assigning the donor in the first available day according to

his/her blood type. In fact, keeping the first available slots empty may negatively affect the

system if no further donors of the same blood type will ask for reserving a donation, because

such slots will remain empty. The second point requires not to fill all of the preassigned

slots of a day; otherwise, the range of choice for the next calling donor is reduced. Hence,

flexibility means to assign donors in the day with the highest number of preallocated slots

still available. Both points are taken into account while assigning scores, each one weighted

by a value. The score Stkb of slots w
b
tk is computed (∀t, k, b) by the following linear formula:

Stkb = λfw
b
tk − λdt (10)

where t represents, according to the MILP model, the day in the time horizon, starting from

the current one in which reservations are arriving (t = 1).

The first term generates higher scores for higher values of wb
tk, i.e., when the flexibility

remains higher if the donor of blood type b is allocated to t and k; the second term, due

to the minus sign, generates higher scores when the donor is allocated to as low as possible

values of t (i.e., to a closer day). λf is the weight of the flexibility term, while λd is the

weight of the early allocation term.

Preallocated time slots are thus sorted and proposed one by one in a decreasing order of

score. If the donors accepts the first proposed slot, this maximizes the goals of the system.

In any case, we remark that every request for reservation is accepted: if no slots are available

in the donors suitable days, an additional slot is forced with respect of the preallocated ones.

4. Subproblems and valid inequalities

In this section we analyze some subproblems, to show the different behaviors of OF1 and

OF2, and to derive valid inequalities that could speed up the computational times.
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Subproblem 1

Let us consider the case of one blood type b∗ alone (|B| = 1), no preallocated slots

(ab
∗

t = 0, ∀t), a constant number of non-booked donors (nb∗

t = n̄b∗ , ∀t), and infinite capacities

(ctk → ∞, ∀t, k). The range for M =
∑

t∈T xb∗

t + ab
∗

t =
∑

t∈T xb∗

t is constrained between

Mmin = �(1− ε)db∗� and Mmax = �(1 + ε)db∗	 by (5) and (6).

If there exists a multiple of |T | in [Mmin,Mmax], then a perfect balancing with zb
∗

t = 0,

∀t ∈ T is possible. Otherwise, the best possible balancing is given by allocating blocks of

|T | time slots (one slot for each day t ∈ T ) until the remaining number of slots to allocate is

lower than |T |. This remaining number N = M−|T |
⌊

M
|T |

⌋
(with 0 < N < |T |) is responsible

of an unavoidable unbalancing because, at the optimum, N slots are allocated in N days

(one for each day), while no slots are allocated in the other |T | − N days. Coherently,

zb
∗

t = 1 − N
|T |

in the N days in which a remaining slot is allocated, while zbt = N
|T |

in the

|T | −N days in which no remaining slots are allocated. Thus:

∑
t∈T

zb
∗

t = N

(
1−

N

|T |

)
+ (|T | −N)

N

|T |
= 2

(
N −

N2

|T |

)
; (11)

v = max
{
zb

∗

t , t ∈ T
}
=

⎧⎨
⎩0 N = {0; |T |}

max
{
1− N

|T |
; N
|T |

}
N ∈ [1, |T | − 1] .

(12)

The first expression in (11) is a parabola with maximum in N = |T |
2

and null value in N = 0

and N = |T |. The second expression in (12) assumes a null value for N = 0 and N = |T |,

while for N ∈ [1, |T | − 1] it is a V-shaped function with minimum value 0.5 in N = |T |
2
.

The remaining number N must be chosen within the range [Nmin, Nmax], where Nmin

and Nmax are the remaining parts of Mmin and Mmax, respectively, which are defined as

follows:

Nmin = Mmin − |T |

⌊
Mmin

|T |

⌋

Nmax = Mmax − |T |

⌊
Mmin

|T |

⌋

This degree of freedom is responsible of the different behaviors between OF1 and OF2 in

terms of allocated xb
t . By constraining the domain ofN to [Nmin, Nmax], the minimum of (11)

is in the farthest point from the maximum of the parabola, i.e., in Nmin if Nmin < |T |−Nmax,

or in Nmax if Nmin > |T | − Nmax. As a consequence, OF1 prefers to allocate a number of

M slots as close as possible to a multiple of |T |. On the contrary, if a perfect balancing is

not possible, the minimum of (12) is obtained by allocating a number of slots M as close as

possible to the intermediate value between two consecutive multiples of |T |.

Intermediate behaviors can be obtained when both OF1 and OF2 are present, which can

be adjusted by varying the relative weight η.
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Subproblem 2

Let consider again one blood type b∗ alone (|B| = 1), a constant number of non-booked

donors (nb∗

t = n̄b∗ , ∀t), and infinite capacities (ctk → ∞, ∀t, k). But, now, let consider some

preallocated slots ab
∗

t . Two cases may occur:

• Subproblem 2a: if ab
∗

t ≤ ξb
∗

t ∀t (where ξb
∗

t denotes the optimal value of xb∗

t in the corre-

sponding Subproblem 1 where ab
∗

t = 0) the same considerations derived for Subproblem

1 still hold, and (11) and (12) are valid. Indeed, slots either belong to ab
∗

t or xb∗

t , but

the constraint on the summation
∑

t∈T

(
xb∗

t + ab
∗

t

)
acts in the same way and the same

values of OF1 and OF2 are reached.

• Subproblem 2b: if ∃t̃ : ab
∗

t̃
> ξb

∗

t̃
, it is not possible to reach the same balancing of

Subproblem 2a, and higher values of OF1 and OF2 are obtained. Even though we

allocate the slots xb∗

t in a balanced way with xb∗

t̃
= 0, the higher value of yb

∗

t̃
with

respect to the mean daily production remains, thus giving an unbalanced solution. In

this subproblem, we cannot derive an analytical expression as for Subproblem 1, but

the best possible balancing can be derived with an algorithm (which is out the scope

of this paper).

Subproblem 3

Let consider again infinite capacities (ctk → ∞, ∀t, k) but more than one blood type, i.e.,

|B| > 1. Due to the presence of unlimited capacity without overtime, the problem can be

decomposed by balancing the blood types individually. Hence, for each blood type b ∈ B, a

Subproblem 1 or Subproblem 2 can be considered.

Other problems

To move towards the complete problem, we can remove the assumption of infinite ca-

pacities (while also including OF3 in the objective function) or we can consider a variable

amount of non-booked donors nb
t among days t. In the most general case, both these aspects

can be included.

By removing the assumption of infinite capacity, the slots of the different blood types

cannot be preallocated individually, and we cannot decompose the problem anymore. Due

to the competing blood types and the resulting overtime costs, the best balancing previously

obtained with Subproblem 1 or Subproblem 2a could not be achieved. Indeed, while improv-

ing the balancing, the additional overtime cost in OF3 could be more expensive than the

corresponding reduction of OF1 and/or OF2, and the system would prefer more unbalanced

solutions.

As for variable nb
t values, an expression for the best possible balancing can be derived

while considering blood types individually, but a close analytical formula does not exist and

an algorithm is required, as for the ab
∗

t̃
> ξb

∗

t̃
case of Subproblem 2.
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Lower bounds

In case of unavoidable unbalancing, it can be time consuming to close the gap between

the integer solution and the continuous relaxation in the commercial solvers (e.g., CPLEX

solver). Indeed, the continuous relaxation splits N among the days with fractional alloca-

tions, whereas the actual integer solution does not. Thus, the branch-and-bound procedure

continues, systematically generating sub problems to analyze and discarding those that do

not improve the objective lower bound. To this end, valid inequalities can be added to

reduce computational times, i.e, additional cuts that reduce the admissible region of only

the continuous relaxation by bounding the values of OF1 and OF2.

In case of constant nb
t , we bound OF1 and OF2 with the best possible balancing obtained

for Subproblem 1 and Subproblem 2a, which correspond to the minimum of (11) and (12),

respectively.

The lowest value of OF1 for a given blood type b∗ is given by (see Subproblem 1 ):

2min

{
Nmin −

N2

min

|T |
;Nmax −

N2

max

|T |

}

Its summation over the blood types, assuming a null value for those types where a perfect

balancing is possible, gives the lower bound LBOF1. Hence, the following lower bound

constraint LB1 is added to the model:∑
b∈B

∑
t∈T

zbt ≥ LBOF1 (13)

We remark that LBOF1 is computed from the available data before the model is run and,

thus, it is another model parameter.

The lowest value of OF2 for a given blood type b∗ is given, according to (12), by:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 Nmin = 0 or Nmax = |T |

1− Nmax

|T |
Nmin > 0 and Nmax ≤ |T |

2

Nmin

|T |
Nmin ≥ |T |

2
and Nmax < |T |

1

2
0 < Nmin < |T |

2
and |T |

2
< Nmax < |T |

Then, the highest of the values among the blood types b gives the lower bound LBOF2.

Hence, the following lower bound constraint LB2 is added to the model:

v ≥ LBOF2 (14)

We remark that also LBOF2 is computed from the available data and it is another model

parameter.

Due to the opposite behaviors of OF1 and OF2, the lower bounds LBOF1 and LBOF2

cannot be reached at the same time (when greater than 0), and the lower bound of their
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summation is for sure higher than LBOF1 + η|T ||B|LBOF2. Another constraint could be

introduced to bound such summation; however, no closed formula are possible in this case.

We should compute
∑

b∈B

∑
t∈T zbt + ηv|T ||B| for each possible combination of the values N

of the different blood types, between their respective Nmin and Nmax; the minimum of the

computed values is the lower bound for the summation.

In case of variable nb
t , the absolute variations zbt also depend on the temporal patterns

of nb
t , and the lower bounds cannot be computed by exploiting (11) and (12). They can

be again computed for individual blood types with simple algorithms that search for the

most balanced pattern
{
yb

∗

t , t ∈ T
}
among the possible ones (given nb∗

t , Mmin and Mmax);

however, in this paper we only focus on lower bounds that can be analytically expressed.

5. Computational tests

In this section we present the computational tests run to analyze the behavior of the pre-

allocation model, and to evaluate the performance of the proposed approach (preallocation

model and prioritization policy) over a period of time in a realistic scenario. We first show

the results from the preallocation model, considering the impact of the modeling assump-

tions and the related parameters (Section 5.1), and the computational aspects (Section 5.2).

Finally, we present the outcomes of the entire approach in Section 5.3.

The preallocation model is implemented in IBM ILOG OPL and solved via CPLEX 12.

The entire approach is implemented in Microsoft Visual Basic, and the developed solution

integrates the data and the prioritization policy with the input and the output of the OPL

model. All experiments are run on a Windows Machine installed on a server with CPU

Intel R© CoreTM i3, 2.40 GHz, and 4 GB of dedicated RAM.

5.1. Modeling assumptions and parameters

In this section we test the behavior of the model in response to different parameter values,

to analyze both the impact such different values and of our modeling assumptions (e.g., the

impact of modeling uncertainty through ε).

Tested instances are divided into two groups, namely A.1 and A.2. Group A.1 includes

balanced instances, where balanced refers to constant amounts of non-booked donors (nb
t)

over the planning horizon t for each blood type b, while group A.2 includes the unbalanced

instances. In both groups we further consider three levels for the fraction of non-booked

donors with respect to the total number of donors: Low (L), Medium (M), and High (H).

The list of the instances is reported in Table 2. Note that in all cases, for the sake of

simplicity, booked donors are not considered (abt = 0, ∀t, b).

All instances are generated by considering 8 blood types (|B| = 8), 7 days of time horizon

(|T | = 7) with 3 periods (|K| = 3), and capacities ctk equal to 240, 300 and 180 minutes for
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Group
Non-booked

level
db, ∀b

∑
t n

b
t , ∀b

Low (L) 51 0

A.1 Medium (M) 34 17

High (H) 17 34

Low (L) 51 0

A.2 Medium (M) 34 17

High (H) 17 34

Table 2: Summary of the instances.

k = 1, 2, 3, respectively, in all days t. Visit durations are assumed to be 15 minutes (r = 15)

and αk fractions are considered equal to 0.5, 0.3 and 0.2 for k = 1, 2, 3, respectively.

Several experiments are conducted by varying ε and δk values, i.e., the parameters that

are related to the main assumptions of the proposed model: ε deals with the uncertainty of

db, and δk weights the overtime (OF3) with respect to the production balancing (OF1 and

OF2). A time limit of 5400 seconds has been imposed in all experiments.

For each instance group and level of non-booked donors, 20 different combinations of ε

and δk values are tested, while fixing η = 1 and considering the entire objective function

(OF1 + OF2 + OF3). Results are reported in Tables 3 and 4. It can be observed that,

for higher δk values (i.e., δk = {8; 6; 3} and δk = {0.8; 0.6; 0.3}), the overtime term OF3 is

privileged, with consequent higher OF1 and OF2 values (meaning an unbalanced system) for

lower ε values. For higher ε values, the system remains balanced also with high δk values,

because of the flexibility given by the larger range around db. On the other hand, lower

δk values (i.e., δk = {0.08; 0.06; 0.03} and δk = {0.008; 0.006; 0.003}) result in completely

balanced solutions as soon as ε > 0, which also show decreasing OF3 values while increasing

ε. Only for Level H of Group A.2, the high unbalanced arrival of non-booked donors always

prevent from a perfect balacing (OF1 �=0 and OF2 �=0, ∀ε) and determines increasing OF3

values with ε, beacuse the system tries to compensate the unbalancing by adding slots.

These trends are confirmed by the ratio between the number of allocated slots (
∑

t

∑
b x

b
t)

and the total number of expected donors (
∑

b db). Figure 4 shows this ratio as a function

of ε for both gropus and all levels of non-booked donors (for δk = {0.08; 0.06; 0.03}). It can

be seen that, except in level H of Group A.2, the number of allocated slots decreases while

ε increases. Thus, the observed better balancing and lower overtimes for higher ε vales are

due to the reduced number of assigned slots. On the contrary, as for level H of Group A.2,

the model allocates more slots to partially compensate the unbalancing given by the high

and unbalanced amount of non-booked donors.
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Figure 4: Allocated slots (
∑

t

∑
b x

b
t) over demand (

∑
b db) for 5 different ε values and 3 non-booked donor

levels: low (L), medium (M) and high (H). Subfigure (a) refers to Group A.1 and subfigure (b) to Group

A.2.

Other analyses are conducted to investigate how overtime is divided among periods

k ∈ K (Figure 5), how booked and non-booked donors are scheduled in a day (Figure 6),

and how many bags per day are produced while trying to balance the production (Figure 7).

All figures refer to the case with all terms in the objective function (OF1, OF2 and OF3),

and with parameters δk = {0.08; 0.06; 0.03}, η = 1 and ε = 0.25.

Figure 5 shows the average utilization among days t for each period k, where utilization

in t and k is given by
(
r
∑

b∈B

(
wb

tk + αkn
b
t

)
+Rtk

)
/ctk, and for the 3 levels of non-booked

donors (L, M and H). In general, results show the possibility of shifting the overtime to the

period k with the lowest penalty δk. However, for level H, overtime is also present in the

most penalized period of the day (i.e., k = 1 in our case) because of the high and unbalanced

number of non-booked donors, which are not controllable.

Figure 6 shows the daily workload (compared with the capacity) for each day t. It can be

seen that the model equally divides the total workload among days, as production balancing

is the primary objective. Moreover, equal proportions of booked and non-booked donors

are found in all days for group A.1, while the proportions vary from day to day in group

A.2. This means that, in the presence of balanced non-booked donors, the system equally

allocates slots in the days to keep the situation balanced, while slots are preallocated to

compensate the unbalanced input in the presence of unbalanced non-booked donors.
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Figure 5: Average utilization for 3 different periods, namely early morning (k = 1), late morning (k = 2),

and afternoon (k = 3). Subfigure (a) refers to Group A.1 and subfigure (b) to Group A.2, both including

the 3 levels of non-booked donors.

Figure 6: Daily workload for the 3 levels of non-booked donor: L (first column in each day), M (second

column in each day), and H (third column in each day). Subfigure (a) refers to Group A.1 and subfigure

(b) to Group A.2.
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Figure 7: Minimum, average and maximum daily production for a blood type (same values for all types) for

the 3 levels of non-booked donors: low (L), medium (M) and high (H). Subfigure (a) refers to Group A.1

and subfigure (b) to Group A.2.

Lastly, Figure 7 shows the minimum, average and maximum daily production of blood

bags among days t for a given blood type b (values are the same for all blood types, as

the same db values are used ∀b). The model perfectly balances the daily production; the

only difference is again due to the unbalanced number of non-booked donors that affects the

production in the H case of group A.2.

It can be seen from the analyses that the amount of non-booked donors, in the presence

of unbalanced arrivals, has a great impact on the system, both in terms of overtime and

balancing (see in particular level H of Group A.2). However, with an appropriate set of

parameters, the model is able to find a good trade-off between production balancing and

overtime reduction also in this case. Thus, the decision maker can choose the preferred set

of parameters based on his/her priorities and the features of the blood collection centre.

Another parameter with a high impact is ε, which models the uncertainty degree associated

with db. As shown, high values of ε may deteriorate the quality of the solution and, in

particular, reduce the amount of produced bags. Thus, the decision maker should accurately

set this value not to constrain the solution on a number of donors different from the actual

one, but also not to reduce the production without a real motivation coming from the data.
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Instance T ε abt
I.1 14 0.1 0

I.2 14 0.1 40-80%

I.3 14 0.25 0

I.4 14 0.25 40-80%

I.5 28 0.1 0

I.6 28 0.1 40-80%

I.7 28 0.25 0

I.8 28 0.25 40-80%

Table 5: Instances for the analysis of computational times and LBs.

5.2. Computational times and lower bounds

Different model formulations (i.e., with alternative objective functions) are solved both

neglecting and including LB1 and LB2, to analyze their impact on the computational times.

Eight test instances are considered, to give a wide range of situations, which have been

generated as follows. The time horizon T is set either equal to 14 or 28 days, and each day

is divided in |K| = 3 parts; the set B includes 8 blood types; db vector for the 8 blood types

is assumed to be {140; 28; 56; 5; 14; 4; 140; 42} for T = 14 and {280; 56; 112; 10; 28; 9; 280; 84}

for T = 28; two uncertainty values ε are chosen, i.e., 0.1 and 0.25; overtime penalty values

δk are selected to be 0.08, 0.06 and 0.03 for k = 1, 2, 3, respectively; αk fractions are taken

equal to 0.4, 0.3 and 0.3 for k = 1, 2, 3; respectively; the number of non-booked donors nb
t

is assumed constant over the days and the values for the different blood types are set equal

to {2; 0; 1; 0; 0; 0; 2; 1}; the capacity ctk is assumed equal to 450 minutes for each day t and

period k; visit duration r is assumed to be 20 minutes and such value is also used to compute

Rtk when required. Maximum variation weight η in the objective function is finally set equal

to 1.

Different values are considered for abt , to evaluate both the case without (abt = 0, ∀t, b)

and with previously allocated slots. In the latter case, each allocated slot abt is randomly

generated within the 40%-80% range of the corresponding optimal values ξbt of xb
t obtained

without previously booked donors (abt = 0). Moreover, the corresponding Rtk values are

generated by randomly splitting abt over the |K| periods within the day t. Names and

characteristics of the instances are summarized in Table 5.

A total of 8 configurations of objective functions and LBs have been analyzed for each

instance, thus obtaining 64 combinations for the pair instance-configuration. A 3600 seconds

time limit and 2.5 GB memory limit have been set in all cases.

Results are reported in Tables 6–8 in terms of CPU time, objective function (OF) value,

and lower bound value of the objective function (OFlow), i.e., best bound given by CPLEX.
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OF1+OF3 OF1+OF3 with LB1 Time OFlow

Inst. CPU time OF OFlow CPU time OF OFlow reduction improvement

I.1 0.18 12.14 12.14 0.17 12.14 12.14 0.01 0.00%

I.2 0.19 12.14 12.14 0.13 12.14 12.14 0.06 0.00%

I.3 16.21 10.43 10.43 0.25 10.43 10.43 15.96 0.00%

I.4 0.22 12.14 12.14 0.22 12.14 12.14 0.00 0.00%

I.5 589.80 24.43 24.43 2.21 24.43 24.43 587.59 0.00%

I.6 0.25 24.43 24.43 0.17 24.43 24.43 0.08 0.00%

I.7 674.72* 21.93* 19.39* 0.29 21.93 21.93 674.43 13.10%

I.8 0.45 24.43 24.43 2.52 24.43 24.43 -2.07 0.00%

Table 6: Results for the cases OF1+OF3; * indicates that the run is terminated because the memory limit

has been reached.

OF2+OF3 OF2+OF3 with LB2 Time OFlow

Inst. CPU time OF OFlow CPU time OF OFlow reduction improvement

I.1 2.15 80.00 80.00 0.29 80.00 80.00 1.86 0.00%

I.2 0.17 80.00 80.00 0.15 80.00 80.00 0.02 0.00%

I.3 1.32 72.00 72.00 0.23 72.00 72.00 1.08 0.00%

I.4 0.22 72.00 72.00 0.23 72.00 72.00 -0.01 0.00%

I.5 0.88 152.00 152.00 0.44 152.00 152.00 0.44 0.00%

I.6 0.25 152.00 152.00 0.20 152.00 152.00 0.05 0.00%

I.7 TL 136.00 128.00 0.27 136.00 136.00 3599.73 6.25%

I.8 0.22 136.00 136.00 0.22 136.00 136.00 0.00 0.00%

Table 7: Results for the cases OF2+OF3; TL indicates that the run is terminated because the time limit

has been reached.

Tables also compare the case with and without LB by showing the time reduction and the

per cent OFlow improvement (increase) when LB is included.

We first observe very low computational times, which increase with the number of days

in T , with parameter ε, and in the absence of preallocated slots (abt = 0 ∀t, b). In particular,

the absence of preallocated slots introduces symmetries among days, which result into longer

computational times.

In most of the cases, the problem is solved in few seconds or even in less than 1 second.

This guarantees the applicability of the model and allows refreshing the preallocation of

the slots with a high frequency. Even though we suggest a daily refresh, higher frequencies

are possible, which may be useful when a high number of reservation calls arrive. Longer

computational times and memory or time limit stops are observed only in instance I.7. This

is the most demanding instance (without previously allocated slots, with higher variability

ε, and with longer horizon T ); however, this instance is not realistic in the actual practice,

especially for the absence of previously allocated slots.
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OF1+OF2+OF3 OF1+OF2+OF3 with LB1 Time OFlow

Inst. CPU time OF OFlow CPU time OF OFlow reduction improvement

I.1 14.31 92.14 92.14 0.21 92.14 92.14 14.10 0.00%

I.2 0.13 92.14 92.14 0.12 92.14 92.14 0.01 0.00%

I.3 531.63 84.86 84.86 633.89 84.86 84.86 -102.26 0.00%

I.4 0.28 84.86 84.86 0.22 84.86 84.86 0.06 0.00%

I.5 739.23 176.43 172.08 0.59 176.43 176.43 738.64 2.53%

I.6 0.33 176.43 176.43 0.26 176.43 176.43 0.07 0.00%

I.7 1048.19* 162.71* 147.08* 1530.07* 162.71* 157.93* -481.88 7.37%

I.8 90.08 162.71 162.71 65.31 162.71 162.71 24.77 0.00%

(a)

OF1+OF2+OF3 with LB2 Time OFlow

Inst. CPU time OF OFlow reduction improvement

I.1 0.17 92.14 92.14 14.14 0.00%

I.2 0.12 92.14 92.14 0.01 0.00%

I.3 43.56 84.86 84.86 488.07 0.00%

I.4 0.27 84.86 84.86 0.01 0.00%

I.5 327.76 176.43 176.43 411.47 2.53%

I.6 0.24 176.43 176.43 0.09 0.00%

I.7 1218.35* 162.71* 161.76* -170.16 9.98%

I.8 97.71 162.71 162.71 -7.63 0.00%

(b)

OF1+OF2+OF3 with LB1+LB2 Time OFlow

Inst. CPU time OF OFlow reduction improvement

I.1 0.23 92.14 92.14 14.08 0.00%

I.2 0.12 92.14 92.14 0.01 0.00%

I.3 713.24 84.86 84.86 -181.61 0.00%

I.4 0.27 84.86 84.86 0.01 0.00%

I.5 0.33 176.43 176.43 738.90 2.53%

I.6 0.23 176.43 176.43 0.10 0.00%

I.7 1362.84* 162.71* 157.93* -314.65 7.38%

I.8 125.56 162.71 162.71 -35.48 0.00%

(c)

Table 8: Results for the cases OF1+OF2+OF3 without LBs and with LB1 (a), with LB2 (b), and with both

LB1 and LB2 (c); * indicates that the run is terminated because the memory limit has been reached.
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Comparing the results with and without LB, we can see the benefit of including LBs.

Even though the OFlow improvement is null in most of the cases, the CPU time reduction is

generally positive and sometimes relevant. As for OF1+OF3 and OF2+OF3, the respective

LB guarantees to get the optimum also in instance I.7 for which a memory or time limit

is reached without LB. Moreover, the presence of LB makes all CPU times lower than 1

second. Concerning OF1+OF2+OF3, LBs generally improve the CPU times but none of

the alternatives (LB1, LB2 or LB1+LB2) seems to be the best one, e.g., LB1 is the best

alternative for I.5 while LB2 is the best alternative for I.3. Also, LB1+LB2 does not seem

to improve the performance with respect to the single LB cases. Negative time reductions

are observed for I.7 and OF1+OF2+OF3, but they are not significant because a memory

limit occurred in all cases, both with and without LB.

We remind that we respect the assumptions of (11)-(12) in the 8 instances, because

we are considering constant nb
t values over t for each blood type b and because, when we

include already booked donors, we are assuming that abt > 0 values are always lower than

the ξbt values of the corresponding instance with non-booked donors (abt = 0, ∀t, b). For this

reason, the value of the objective function does not change within each pair of corresponding

instances with non-booked and previously booked donors (e.g., I.1 and I.2).

5.3. Entire approach

In this section we test the effectiveness of the entire approach on a realistic instance

derived from AVIS Milan case, and we analyze the impact of the coefficients λd and λf for

the prioritization policy of the allocation phase.

Experiments are conducted with a rolling approach; the preallocation model is run, at

each rolling day, considering the previously assigned slots (abt), and then the newly arriving

calls for reservation are addressed to one of the preallocated slots xb
t . At the end of the day,

abt values are updated with the new reservations, and the day t is shifted to t+1. Then, the

two phases are repeated, and so forth. The considered rolling period consists of 200 days,

and the preallocation model is run at each rolling day with a planning period of |T | = 28

horizon days. At the first rolling day, we start from an empty condition without booked

donors (abt = 0, ∀t, b).

The number of donors at each rolling day and their blood types are directly taken from

the historical data of AVIS Milan, considering the whole blood donations over 200 days, from

April 6 to October 22, 2014. In the dataset, the daily list of donations with the associated

donor ID (from which all other information can be extracted) are available. Over these

days, about 51 whole blood donations were made on average per day with a total of 10124

donations. The percentages of blood groups and Rhesus factor were as follows: 33.67% for

A Rh+, 5.49% for A Rh-, 10.25% for B Rh+, 1.71% for B Rh-, 3.68% for AB Rh+, 0.56%

for AB Rh-, 37.60% for 0 Rh+, and 7.02% for 0 Rh-. The historical data show that the

number of produced bags over these 200 days is highly variable among the days, as shown
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in Figure 3.

To create the instance for the test, we have simulated the subsets of booked and non-

booked donors, as the possibility of reserving a donation in AVIS Milan is quite new and

no significant historical information are available. Thus, to generate the portion of booked

donors, existing donors in the historical date are randomly assigned to booked or non-booked

class. From a discussion with the managers of AVIS Milan, they declared that a good

percentage of booked donors should be at least the 80%. Thus, each donor is independently

considered to be booked with probability 0.8, and non-booked with probability 0.2.

For the non-booked donors we assume that they arrive in the same day as in the historical

data. For each booked donor, we use the previous donation date and we compute the first

available donation day (90 days after the previous donation for men and 180 days for women);

then, date of the reservation call is generated by adding a random number of days, uniformly

distributed between 0 and 30, to the first available day.

The preallocation model has been solved considering either the configuration OF1+OF3

(including LB1 in the formulation) and the configuration OF2+OF3 (including LB2 in the

formulation), to evaluate the two opposite cases in terms of balancing. The following pa-

rameters have been considered: time horizon T equal to 28 days with each day divided in

|K| = 3 parts; set B made of 8 blood types; overtime penalties δk equal to 0.08, 0.06 and 0.03

k = 1, 2, 3, respectively; fractions αk equal to 0.4, 0.3 and 0.3 for k = 1, 2, 3, respectively;

capacity ctk equal to 450 minutes ∀t, k; all visit durations equal to 20 minutes (for both r

and Rtk). As for a
b
t and Rtk, they are daily updated by the rolling approach, starting from no

preassignments at the first day. Differently from Section 5.2 where the time associated with

each abt is randomly split among the corresponding Rtk, here we exactly track the assigned

period k and each preallocated slot directly determines both abt and Rtk. The remaining

parameters are chosen to fit the tested case: db vector for the 8 blood types with |T | = 28

is assumed as {503; 76; 151; 22; 50; 8; 602; 98} (index b follows the same order than in the

sentence above where the percentages of blood groups and Rhesus factor in the historical

data are listed) and the uncertainty parameter ε is taken equal to 0.25 to model the observed

variability; the number of non-booked donors nb
t is assumed to be constant over the days (no

trend is observed but just noise) and the values for the different blood types are set equal

to {3; 1; 1; 0; 0; 0; 4; 1}.

Two different configurations for the prioritization policy are considered. Either we in-

clude only the system flexibility (with λd = 1 and λf = 0) or the first available slot policy

(with λd = 0 and λf = 1). Also for the two terms in the prioritization of slots, we have

considered the two opposite cases to see the entire range of behaviors; any other case is

intermediate among the tested combinations.

Results are separately reported in Figures 8–11 for the four tested cases. Subfigure (a)

report, for the 200 rolling days, the number of donations (total number, booked and non-

booked) and the
∑

b x
b
t + abt values for the first day of the respective planning horizon (with
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Figure 8: Number of donations per day for objective function OF1+OF3 with λd = 1 and λf = 0: (a) total

number of donations, booked donations, non-booked donations, and
∑

b x
b
1
+ a

b
1
; (b) comparison between

the total number of donations in the test case and in the observed historical data.

Case Mean Minimum Maximum

OF1+OF3 with λd = 1 and λf = 0 0.96 0 13

OF1+OF3 with λd = 0 and λf = 1 22.85 0 27

OF2+OF3 with λd = 1 and λf = 0 2.96 0 15

OF2+OF3 with λd = 0 and λf = 1 22.97 0 27

Table 9: Waiting time in days between reservation call and donation for booked donors: mean, minimum

and maximum values among all booked donors in the 200 days (0 means assigned to the same day).

t = 1). Subfigures (b) report the comparison between the total number of donations in the

test case and in the historical data. Moreover, the waiting times between the reservation

call and the donation are reported in Table 9.

Results show that the approach is able to balance the production of blood bags among

days. The part related to the booked donations, which can be optimized, is highly balanced

in all of the tests. On the contrary, the part related to non-booked donations obviously fluc-

tuates as in the historical data. Globally, comparing the outcomes with the historical data,

daily fluctuations are reduced even despite the remaining 20% of uncontrolled non-booked

donor arrivals. We remark that the 80% of booked donors was considered because this
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Figure 9: Number of donations per day for objective function OF1+OF3 with λd = 0 and λf = 1. Reported

data are as in Figure 8.

Figure 10: Number of donations per day for objective function OF2+OF3 with λd = 1 and λf = 0. Reported

data are as in Figure 8.
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Figure 11: Number of donations per day for objective function OF2+OF3 with λd = 0 and λf = 1. Reported

data are as in Figure 8.

represents the first goal of AVIS Milan while introducing the reservation system. However,

our results show that, despite the good behavior of the approach, a remaining detriment

of the balancing is present due to the 20% of non-booked donors. Thus, our suggestion is

to implement all promotion policies to bring the highest number of donors to reserve the

donation in advance.

Results presented above refer to all blood types together. However, a similar balancing is

obtained while considering each blood type singularly. For instance, we report in Figure 12

the number of booked donations and the total number of donations, divided by blood type,

for the case OF1+OF3 with λd = 1 and λf = 0. Even though the variability among days is

slightly higher than in the total amount of donations, the balancing is mainly guaranteed.

Comparing the different test cases, it can be seen that keeping the flexibility of the system

without prioritizing the first available slot is not very effective. In fact, as shown in Table

9, waiting times between reservation call and donation are significantly longer. This has a

negative impact on the amount of donations, as longer waiting times reduce the donation

frequency. Moreover, without weighting the first available slot, the closest slots could remain

empty, thus reducing the daily throughput of the system. On the contrary, neglecting the

flexibility has not a negative impact on the outcomes. However, in our tests, we assume that

donors always accept the first suggested slot (with the highest score Stkb) without evaluating

donors’ preferences, who might also ask to donate in a day without any empty preallocated

slots. This evaluation requires data that are not included in the AVIS Milan database.

The two weights λd and λf also impact on the ramp-up period. The number of booked
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Figure 12: Number of donations per day, divided by blood type, for objective function OF1+OF3 with

λd = 1 and λf = 0: (a) booked donations and (b) total number of donations. Labels of blood types are

reported in increasing order of the associated index b.

donations does not stabilize until about the 50th day for the cases with λd = 0 and λf = 1.

As mentioned, flexibility spreads the donation days over the time horizon, thus letting some

slots empty, while on the contrary assigning slots based only on the first available day fills

the slots from early beginning, thus avoiding empty slots in the first days when the system

starts with abt = 0.

In all cases, after the ramp-up period,
∑

b x
b
1
+ab

1
at the first day of the planning horizon

is really close to the number of booked donations (equal or slightly higher). This indicates

both that the db parameters have been appropriately set and that, once a fair prediction of

db is considered, our system does not leave many empty preallocated slots. A slightly higher

number of empty slots is present with OF1+OF3, but this amount is anyway limited.

We finally remark that the preallocation model has been always solved to the optimum

in all rolling days of all the cases.

We have also considered a further experiment, besides the four tested cases, to verify

that intermediate behaviors are obtained. We run the same instance with all of the terms

OF1, OF2 and OF3, assuming η = 1, λd = 5 and λf = 1, and considering the same values

for all other parameters. Actually, the presence of an intermediate behavior with respect to

those above presented is confirmed.
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6. Discussions and conclusion

In this paper, we first define (to the best of our knowledge) and formalize the BDAS

problem, and we propose an appointment scheduling framework to solve it.

Our framework for planning the assignments consists of two phases: a MILP model to

preallocate time slots of the different blood types, and a prioritization policy to assign the

preallocated slots. The goal is to balance the production of blood bags of each type among

the days, while also avoiding physician overtimes. The main points of our framework are,

besides the decomposition in two phases, the presence of both booked and non-booked donors

and the degree of freedom for the number of slots to preallocate (due to the uncertainty

associated with db). The latter point makes our preallocation model different from the

allocation and scheduling models usually available in the literature, since here the amount

of entities to allocate is another decision variable, whereas it is fixed in several other cases.

The proposed approach has been successfully applied to the real case of a large blood

collection centre operating in Italy, the AVIS Milan, and the results confirm the capability

of the approach to balance the production of each blood type among days.

Future work will be conducted to extend the model, e.g., to include donations different

than the whole blood and to consider missed donations. The latter refers to donors who

reserve a donation slot but do not make the donation, because of no-show or because the

physician does not admit them to donation after the visit.

Moreover, to improve the quality of the solution, we will investigate the possibility of

creating a robust counterpart of the preallocation model. At present, the uncertainty is

modeled through parameter ε, but the model is deterministic. On the contrary, a robust

version would include uncertain parameters, at least for db and nb
t .

Finally, a further extension will be the adaptation of the model to follow a predetermined

demand pattern rather than a constant demand.
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