
Consiglio Nazionale delle Ricerche
Istituto di Matematica Applicata

e Tecnologie Informatiche
“Enrico Magenes”

REPORT S

D. D’Agostino, E. Danovaro, A. Clematis,
L. Roverelli, G. Zereik, A. Galizia

From lesson learned to the refactoring
of the DRIHM science gateway for

hydro-meteorological research

16-07

IMATI REPORT Series

Nr. 16-07 – March 2016

Managing Editor

Paola Pietra

Editorial Office

Istituto di Matematica Applicata e Tecnologie Informatiche “E. Magenes”
Consiglio Nazionale delle Ricerche
Via Ferrata, 5/a
27100 PAVIA (Italy)
Email: reports@imati.cnr.it
http://www.imati.cnr.it

Follow this and additional works at: http://www.imati.cnr.it/reports

Copyright © CNR-IMATI, 2016.
IMATI-CNR publishes this report under the Creative Commons Attributions 4.0 license.

http://www.imati.cnr.it/
mailto:reports@imati.cnr.it
http://www.imati.cnr.it/
http://www.imati.cnr.it/reports
http://www.imati.cnr.it/reports

IMATI Report Series Nr. 16-07
7th March 2016

From lesson learned to the refactoring of the

DRIHM science gateway for
hydro-meteorological research

Daniele D’Agostino, Emauele Danovaro, Andrea Clematis,

 Luca Roverelli, Gabriele Zereik, Antonella Galizia

IMATI-CNR, Genova, Italy

Copyright © CNR-IMATI, March 2016

https://creativecommons.org/licenses/by-nc-nd/4.0/

Abstract.

A full hydro-meteorological (HM) simulation, from rainfall to impact on urban areas, is a multidisciplinary

activity which consists in the execution of a workflow composed by complex and heterogeneous model

engines. Moreover an extensive set of configuration parameters have to be selected consistently among the

models, otherwise the simulation can fail or produce unreliable results. The DRIHM portal is a Web-based

science gateway aiming to support HM researchers in designing, executing and managing HM simulations.

The first version of the portal was developed during the DRIHM project using the gUSE science gateway

toolkit. The lesson we learned is guiding a refactoring process that, together with a review of the most

relevant technologies for the development of a science gateway, represent the focus of this paper. Beside the

technological aspects, the need of a strong interplay between ICT and other domain-specific communities

clearly emerged, together with coherent policies in the management of data, computational resources and

software components that represent the ecosystem of a science gateways.

Keywords: Science gateways, Hydro-meteorology, e-Infrastructures

IMATI Report Series Nr. 16-07

From lesson learned to the refactoring of the
DRIHM science gateway for

hydro-meteorological research

Daniele D’Agostino Emanuele Danovaro
Andrea Clematis Luca Roverelli Gabriele Zereik

Antonella Galizia

Abstract

A full hydro-meteorological (HM) simulation, from rainfall to im-
pact on urban areas, is a multidisciplinary activity which consists in
the execution of a workflow composed by complex and heterogeneous
model engines. Moreover an extensive set of configuration parameters
have to be selected consistently among the models, otherwise the sim-
ulation can fail or produce unreliable results. The DRIHM portal is a
Web-based science gateway aiming to support HM researchers in de-
signing, executing and managing HM simulations. The first version of
the portal was developed during the DRIHM project using the gUSE
science gateway toolkit. The lesson we learned is guiding a refactoring
process that, together with a review of the most relevant technologies
for the development of a science gateway, represent the focus of this
paper. Beside the technological aspects, the need of a strong interplay
between ICT and other domain-specific communities clearly emerged,
together with coherent policies in the management of data, computa-
tional resources and software components that represent the ecosystem
of a science gateways.

1

1 Introduction
Severe hydro-meteorological (HM) events like storms and floods are highly
impacting on human society and economical activities. This is the reason
why Hydro-Meteorology Research (HMR) can be considered one of the key
research topics in this century, in particular considering the incoming climate
change effects [1].

A full HM simulation is composed by meteorological, hydrological and
hydraulic models. Many attempts have been made in different countries to
build up sound model workflows [2, 3]. However in most cases the models
in the chains are clumsily stitched together so that only one meteorological
model i and one hydrological model j and one hydraulic model k fit to-
gether via handcrafted scripts. Adding another data set or replacing model
j by model j2 can involve considerable re-engineering and analysis and thus
hampers progress.

The Distributed Research Infrastructure for Hydro-Meteorology1 project
(DRIHM) makes now possible to work in a modular environment, the science
gateway named DRIHM portal2. The result is an enhancement of the mod-
elling and data processing capabilities of the HMR community through the
adaptation, optimization and integration of dedicated HMR services over the
DRIHM e-Infrastructure. The science gateway is an open platform accessible
to all interested scientists.

The Information and Communications Technology (ICT) aspects of the
portal, implemented during the DRIHM project using the grid and cloud User
Support Environment (gUSE) [4] science gateway toolkit and the European
e-Infrastructure ecosystem, has been analyzed in a companion paper [5]. In
particular we presented technological insights, with an analysis of the main
features and issues of the adopted technologies and e-Infrastructures. The
conclusion was that science gateway toolkits are powerful tools that allow
non-ICT users to quickly deploy applications by providing a set of enabling
technologies, plus front-end and back-end services ready to be used.

However in some scenarios more effective solutions can require the ex-
ploitation of different technologies: this is the case of the HM experiments
at the basis of the DRIHM project. But this approach requires a strong in-
terplay between the ICT and the domain-specific communities. The present
paper discusses these aspects and presents how we are refactoring the portal
services on the basis of the lesson learned. Our goals are to develop a more
open environment with respect to the current one and to trade some of the

1The DRIHM website, http://www.drihm.eu
2The DRIHM portal, https://portal.drihm.eu

2

Rainfall

Water level
Flow & Impact

Discharge

O-Interface
OpenMI 2

Point series data
WaterML 2.0

Single/Ensemble

Single

Gridded data
NetCDF 1.6

RainFARM

NetCDF Bridge

NetCDF Bridge

Raingauge
Observations

WaterML 2 Bridge

MesoNH
NetCDF Bridge

WRF-NMM
NetCDF Bridge

WRF-ARW
NetCDF Bridge

P-Interface – NetCDF 1.6

Stream Flow
Observations

WaterML 2 Bridge

HBV

NetCDF WaterML 2

WaterML 2 Bridge

RIBS

NetCDF WaterML 2

WaterML 2 Bridge

DRiFt

NetCDF WaterML 2

WaterML 2 Bridge

Q-Interface – WaterML 2.0

OpenMI WaterML reader

O
pe

nM
I c

om
po

si
tio

n Mascaret

RFSM

Property Damage

Delft-3D

WaterML 2 Bridge

Figure 1: Hydro-meteorological simulations performed by DRIHM platform
(left) and corresponding models available on the DRIHM platform, commu-
nicating trough standardized interfaces.

flexibility in workflow management (not required by the HM use case) for
a lighter software architecture with a cleaner decoupling between the server
and the user interfaces.

The paper is structured as follows: Section 2 summarizes the requirements
of the HM experiments, the most important features of the DRIHM portal
and the limits of the adopted technologies. Section 3 provides a brief overview
of the available technologies science gateway developers can exploit. Section 4
discusses the refactoring process on the basis of the lesson learned, while the
last Section concludes.

2 The DRIHM science gateway
The main purpose of the DRIHM science gateway is to support users in HM
experiments configuration and execution.

An experiment can produce a rainfall simulation on a selected domain, a
river discharge simulation, a water level and impact simulation in case of flood
or a combination of them. Left side of Figure 1 highlights the three activities
involved in a full simulation chain, while right side of Figure 1 represents the
set of numerical models currently available in the science gateway3. We can
simulate rainfall in two complementary ways: by executing a deterministic
meteorological model (i.e. WRF-ARW, WRF-NMM and MesoNH) or with

3Details on software and data licences are provided in Deliverable 4.3,
http://www.drihm.eu/index.php/project/deliverables

3

stochastic downsampling (i.e. producing a set of meteorological predictions
with a stochastic approach) as in RainFARM. Discharge simulation is gen-
erated by hydrological models (i.e. DRiFt, RIBS and HBV), which simulate
the flow in the river channel. In case of flood, water level and impact are
simulated by hydraulic models (i.e. Delft3D or the OpenMI composition of
Mascaret, RFSM and Property damage).

The adoption of standardized interfaces and proper data conversion tools
developed in the project resulted in the possibility to freely couple these
models. These interfaces are depicted in the right part of Figure 1, which
can be interpreted as a direct graph: models are the nodes and arrows are
the directed arcs, connecting two models sharing the same interface. Each
possible simulation chain is a path on the directed graph, thus the selection
of a single model, or a complex chain (e.g. WRF-NMM, RainFARM, RIBS
and Delft3D) defines valid chains, supported in our science gateway.

2.1 Experiment configuration

The configuration of an experiment requires two major steps: at first the
user has to select the models composing the experiment, then she/he has
to configure each of them. At this aim, the science gateway provides the
following set of functionalities:

• Experiment configuration: is the chain selection tool, and allows users
to specify the desired simulation steps (meteorological, stochastic down-
sampling, hydrological and hydraulic) and the models to be run. After
the model selection, further configuration features are enabled.

• Meteorological model configuration: this tool supports the definition of
the geographic domain and time range, plus model-specific parameters.
Some parameters may depend on the configuration of the other models
belonging to the chain.

• Stochastic downsampling configuration: this implies multiple model
instances’ execution.

• Hydrological model configuration: this tool supports the definition of
a simulation on a river basin. It requires complex geo-referenced con-
figuration data describing the basin (such data are model specific),
information on soil moisture and on expected rainfall (from simulation
and/or observation).

• Hydraulic model configuration: calibrating an hydraulic model requires
extremely complex desktop tools, so DRIHM relies on pre-calibrated

4

models freely available within the portal. Users can configure the ex-
periments by selecting input discharge data.

The configuration steps are performed using the DRIHM portal. It has
been designed with a strong focus on flexibility: instead of producing a mono-
lithic user interface (UI), we decided to produce a component-based UI. For
instance, the configuration of the hydrological models shares the basin def-
inition, while dedicated UI components focus on model-specific parameters.
With this approach we can easily add new models or modify their UIs with-
out affecting the overall design. In the project we adopted the most relevant
toolkit in Europe (it is currently used by about 30 gateways), the gUSE
science gateway framework, based on the Liferay Portal. Therefore the UIs
have been implemented using the portlet technology supported by Liferay.

It is worth considering that, configuring an experiment, we have to keep
consistency among the steps composing it: in particular we have to consider
coherent geographical domain, time range and time frame. We discovered
that portlets, preventing inter-portlet communications, are a poor choice for a
modular interface supporting experiment composition. Therefore we granted
consistency relying on a complex and fixed dependency among portlets, as
described in Section 4.1.

2.2 Experiment execution

The configuration of an experiment corresponds to the definition of a work-
flow composed of several blocks, one for each simulation step. When an
experiment is submitted for the execution the portal creates, for each block,
a set of files containing user-defined parameters, the mapping configuration
with proper path and file names, and possible parallelism degree and cali-
bration data. All these files are exploited by a general script that identifies
the model selected, possibly downloads via rsync the related executables,
downloads the necessary data and runs the simulation.

The actual execution of the blocks deeply depends on the simulation step.
The numerical models in fact are characterized by specific and extremely het-
erogeneous (functional and non-functional) requirements. This is the reason
why we exploit all the available European e-Infrastructure ecosystems as the
European Grid Infrastructure (EGI)4, the Partnership for Advanced Com-
puting in Europe (PRACE)5 and the EGI Federated Cloud6. In the com-
panion project Distributed Research Infrastructure for Hydro-Meteorology

4The European Grid Infrastructure, https://www.egi.eu
5The Partnership for Advanced Computing in Europe, http://www.prace-ri.eu
6The EGI Federated Cloud, https://www.egi.eu/infrastructure/cloud/

5

to United States of America (DRIHM2US)7 we considered also the use of the
Extreme Science and Engineering Discovery Environment (XSEDE)8. This
shared Distributed Computing Infrastructure (DCI) is described in details
in [6].

The link between the front-end and the experiment execution has been
implemented exploiting the gUSE Application-Specific Module Application
Programming Interfaces (ASM API). Custom portlets guide the user in ex-
periment configuration, produce input parameters and associate all the data
with the experiment workflow steps. The workflows are managed using the
gUSE services and the actual job submission is performed exploiting the DCI
Bridge. It is worth mentioning that the DCI Bridge provides a standard Open
Grid Services Architecture - Basic Execution Service (OGSA-BES) interface
for submitting jobs to almost all DCIs: this represented one of the key aspect
that motivated the selection of this toolkit.

When the model run ends, the outputs are stored on the DRIHM result
repository and all files are deleted from the resources. In case the execu-
tion ends with a successful status, the portal submits the next simulation
block following the same steps described above. Otherwise it provides error
messages to the users. All these actions are supported by proper portlets.

2.3 The lesson learned

The DRIHM portal achieved the goal of providing a user-friendly front-end
that hides all the low level ICT burdens and allows HM scientists to reduce
from days to minutes the time required to run simulations using alternative
models and experiment configurations [7, 8]. The adoption of gUSE allowed
us to speed-up the portal development, by exploiting general-purpose ser-
vices plus the possibility to submit jobs on almost all the DCIs in Europe
and US. But, on the other side, during the development we identified sev-
eral issues that led us to investigate alternative solutions [5]. Some issues
arise from the integration of data and software used by the reference scien-
tific community, with general purpose distributed infrastructures and other
services (including middlewares and software components). A key aspect is
that these components are produced/managed by different entities that have
independent policies, roadmaps and goals. For example access rules based on
individual capabilities represent a limiting factor. But a solution to this class
of problems is out of our scope, and we can only provide recommendations.

7The DRIHM2US website, http://www.drihm2us.eu
8The Extreme Science and Engineering Discovery Environment,

https://www.xsede.org/

6

From a technological point of view, the advanced support for the coherent
experiment configuration required us to spend a large part of the effort in the
UI and related logic, for proper parameters selection and consistency checks.
Adopting the Liferay/gUSE architecture, we implemented the portal front
end as a set of portlets. This led us to a first issue: portlet are self-contained
components, and thus prevent direct intra-portlet communication. This is a
main issue, because we have to keep consistency among the steps compos-
ing it: in particular we have to consider coherent geographical domain, time
range and time frame. One possible solution is to have a single portlet for
experiment configuration, with full support of intra-model constraints, but
no flexibility to add new models. As an alternative we can split the config-
uration into multiple portlets, one for each model engine, gaining flexibility
but loosing cross-model checks. Section 4.1 analyze in details the related
issues and suggest a feature-rich yet flexible solution we are adopting now.

Moving from the UI to the underlying architecture we faced similar issues.
The gUSE architecture is modular, but modules are tightly coupled and
the framework is usually released in monolithic way: all components are
upgraded at the same time, with little backward compatibility. Interfacing an
evolving environment, like the computational resources and middlewares we
exploit, with a platform that offers coarse-grained updates, is really difficult.
For this reason we are moving to a more modular architecture, with loosely
coupled components and harmonic but separated lifecycles. Section 4.2 focus
on the detailed description of our solution, rooted in the trend of micro-
services.

The first DRIHM portal implementation was intended as a proof of con-
cept, providing data on a limited number of datasets. Nonetheless, in the few
months after public release, the scientific community showed a great interest,
with nearly two hundreds users and thousands of simulations. Peak activi-
ties (mainly after a flood) heavily loaded the system, consisting of a JavaEE
state-full application hosted in a Tomcat webapp container. Scalability of
this architecture is tricky, so we decided to move to lighter, stateless server
components, as described in Section 4.3

Moreover, working on a proof-of-concept, we had the chance to focus on
model interoperability, complex experiment definition, user-centric UI, but
we spent a limited effort on data provisioning and management, focusing on a
few test cases. When the system proved to be useful and effective, we have got
many request to extend the system scope, to support additional test cases and
to provide provenance information. Therefore the fourth improvement we are
implementing is related to data management and data sharing: Section 4.4
outlines the new features plus some future directions.

7

3 Technologies and Software Tools for a Sci-
ence Gateway

The various scientific communities involved in the development of a science
gateway present different requirements due to the software and/or data they
share and the goals they aim to achieve. For example some communities
may be interested in running large simulations composed by a few software
modules on powerful infrastructures (as in the geosciences [6, 9]), other com-
munities in providing a collection of analysis tools that can be chained to-
gether (as in bioinformatics [10]), and some services can receive particular
attention, as the data sharing [11] or the data visualization [12].

The result is that a science gateway has to provide a set of integrated
and easy-to-use functionalities. In particular the most common ones are the
following:

• user management (including accounting, billing and multi-site/service
access);

• dedicated/general purpose UI to support experiment definition and
configuration;

• workflow engine, to orchestrate heterogeneous software for the experi-
ment execution;

• data management (i.e. provided and supported technologies to store,
fetch and transmit data);

• job execution (based on local, remote services or heterogeneous DCIs);

• data provenance.

Some of these items can be addressed by general-purpose, ready-to-use
solutions (e.g. Grid certificates, workflow management systems), some others
instead rely on ad-hoc solutions (i.e. the UI) that can be developed using
general-purpose technologies. However the key aspect is that a science gate-
way has to integrate a subset of/all these functionalities in one user-friendly
infrastructure. For example privacy and security aspects, i.e. personal or
group based access rights for data, software and computational resources
access, should rely on a technology shared by most of the previous items.

The needs and opinions of the people involved in gateway initiatives have
been investigated in 2014 with a survey having nearly 5,000 respondents [13].
The most relevant results, for the aim of the present paper, are the follow-
ing. About 11 kinds of applications are provided within a gateway, but the

8

most important ones are education tools (18%), computational tools (16%),
data analysis tools (16%) and data collections (15%). At least 40% of the
participants indicated that some help might be needed by a service provider
in adapting technologies, usability services and choosing technologies. This
also because the available technological solutions science gateway toolkits
provide can be not enough flexible and powerful for all the possible com-
munities and applications. In this Section we analyze the most important
alternative “ingredients” - in terms of technologies, software tools and their
features - we and other science gateway developers can exploit in implement-
ing a new/updating a portal.

While gUSE is the most relevant toolkit in Europe, Apache Airavata [14]
is the most relevant toolkit in US. The main interface of Airavata is rep-
resented by the API Server. It is based on Apache Thrift, which can be
used to generate “client Software Development Kits” (SDK) in several lan-
guages as Java, PHP, Python and C++. Gateway developers integrate the
selected SDK into their gateway front-end, which can access the server using
the TCP/IP, HTTP(S) protocols. Airavata supports the execution of work-
flows on local or remote resources, as those provided by XSEDE, available
via ssh, Globus, Unicore and Cloud middlewares. The Credential Store com-
ponent manages user credentials needed by a gateway to securely interact
with resources belonging to these infrastructures. The Application Factory
(GFAC) instead provides a generic framework to wrap command line ap-
plications by generating a SOAP, REST or a native Java interface. The
application provider has to specify the application input, outputs, tempo-
rary working directories and remote access mechanisms for file transfers and
job submissions. These data are then stored in a Registry Service, that can
host also information about datasets. The Orchestrator component acquires
the workflow configuration, the characteristics of each steps from the registry,
the input data from the front-end and interacts with GFAC for managing the
execution of the jobs composing the workflow. At last, the Job Monitor is
decoupled from the submission mechanisms. This choice allows the use of
both pull approaches (i.e. “qstat”) and push messaging.

The Vine Toolkit [15] is a Java library designed to provide a modular,
extensible an easy-to-use API for Grid-enabling applications. This frame-
work has been used mainly in the Polish Grid Infrastructure to develop gate-
ways for their strategic areas, e.g. Nanomechanics, Quantum Chemistry and
Molecular Physics. Vine provides the basic functionalities required to dis-
tributed applications submission and monitoring as well as data and workflow
management, security and user management. These last functionalities are
provided by a set of co-bundled components that, for example, support the
integration with iRODS server for providing advanced search functionalities

9

based on metadata information. A new service in Vine can be added by cre-
ating a separate software component and implementing a set of predefined
APIs. Adobe Flex and BlazeDS technologies can be used to create Web-
based user interfaces based on Flash, as well as the portlet technology. Vine
Toolkit may be used in different ways, i.e. with Gridsphere, Liferay or in the
standalone mode. Vine presently supports the execution on the following
middleware stacks: gLite, Unicore, Globus and CosQosGrid, a middleware
supporting advance reservation and co-allocation features required by dis-
tributed multi-scale experiments.

The “A grid and virtualization environment” (Agave) [16] provides a
“Science-as-a-Service” (ScaaS) solution for hybrid cloud computing. With
respect to pure “Platform-as-a-service” (PaaS) solutions it provides also com-
putational, data, and collaborative services. It started as a pilot project of
the iPlant cyberinfrastructure for plant biology in 2011 and now it supports
experiments for many life science disciplines. In details the Agave platform
runs in the Cloud as a hosted, multi-tenant service that support develop-
ers and bioinformaticians in building applications using the components of
the iPlant cyberinfrastructure. Agave provides an API supports the regis-
tration and management of applications (currently more than 600 relevant
scientific codes are available), multi-protocol data movement and data trans-
formation tasks, structured and unstructured metadata management using
the NoSQL technology, the submission and monitoring of jobs on heteroge-
neous resources ranging from HPC to Cloud infrastructures, plus the man-
agement of resources and users. Users can run their software as source code,
binary code, virtual machine image, and it is possible to combine it with the
available applications. The resulting workflow can be saved for future reuse
and possibly shared. The Agave client SDK allows Java, Python, PHP, R,
and Perl applications to interact with these services, besides the possibility
for users to exploit the general purpose Agave ToGo Web application. The
entire Agave Platform has been built as a collection of Docker images, i.e.
images constructed from layered filesystems containing the software of the
service and all the necessary dependencies, and can be installed on a PaaS
infrastructure provided with a Docker container.

HUBzero [17] is an open source software platform for supporting collabo-
rative research and educational activities. The defining characteristics of this
platform are the delivery of visual simulation tools, that look like simple Java
applets embedded within the browser, and the strong focus on the collabora-
tive aspects. Hubs are places where users can share datasets, software and in-
formation as papers, presentations and other educational material. Presently
there are about 400 online tools grouped in 23 hubs, e.g. for collaborative
volcano research and risk mitigation, pharmaceutical product development

10

and manufacturing, earthquake engineering simulation, besides the original
nanotechnology community. The HUBzero infrastructure includes a tool ex-
ecution and delivery mechanism based on the Virtual Network Computing
(VNC) graphical desktop sharing system and OpenVZ, that creates multiple
lightweight and isolated containers on a single physical server with a con-
trolled access to file systems, networking, and other server processes. Any
tool with a Graphical UI (GUI) can be installed on the hub in a near straight-
forward way. A GUI can be quickly created for command line software tools
by using the Rappture toolkit. It reads an XML description of the tool’s
inputs and outputs and then automatically generates a GUI. The binding
between this GUI and the software is provided though bindings for a variety
of programming languages, e.g. C/C++, Fortran, and Python. The jobs can
be dispatched XSEDE or other participating cluster resources.

A promising project is represented by the RADICAL Cybertools [18], a
programming library to manage heterogeneous DCIs for extreme-scale ap-
plications using lightweight, extensible and interoperable building blocks. It
currently consists of two components. RADICAL-SAGA is the infrastruc-
ture access layer of the RADICAL Cybertools stack. It provides a homo-
geneous programming interface that supports XSEDE and cloud computing
platforms based on SAGA. RADICAL-Pilot is a flexible system that supports
application-level resource management. It is based on the “pilot” abstraction,
which combines the ability to support extreme-scale task-parallel workloads
with a clean model and flexible execution of heterogeneous concurrent tasks.
The EnsembleMD Toolkit (EnMDTK) project is a Python library provid-
ing a loose collection of RADICAL-Pilot based tools for molecular dynamics
workflows.

This brief analysis shows that every toolkit has its characteristics, derived
from the requirement of their reference user communities and infrastructures.
To summarize, many of them are based on the portlet technology, are tar-
geted to a subset of the available DCIs in Europe and US and moreover
provide a collection of pre-defined components for connecting/supporting
external frameworks, repositories and software applications that are hardly
portable in a new gateway based on a different toolkit/technology. The
present situation for the science gateways toolkits is similar to the scenario
of the Grid infrastructure middlewares before the activities carried out in
the European Middleware Initiative [19]. The main achievements of this
project are the delivery of a consolidated set of middleware components for
deploying DCIs and the establish of a sustainable model to evolve the com-
ponents addressing partially overlapping and similar needs [20]. For example
the usability has been enhanced by removing redundancy and consolidat-
ing the services, simplifying the security management, and adding better

11

programmability interfaces. This because interoperability and compatibility
can be granted only by removing proprietary interfaces in the middleware ser-
vices and ensuring true interoperability through the adoption of community
standards (whenever possible) or, at least, uniform interfaces. This choice
allows the creation of a marketplace where competition in the provision of
added-value services can take place.

To this extent some initiatives have been performed. Among them, the
SHIWA simulation platform uses the gUSE technology to provide work-
flow interoperability across a number of workflow management systems [21].
Moreover, accessing data storages from gateways is a difficult and less inves-
tigated problem than running jobs in DCIs. Toolkit- or gateway-dependent
solution in fact do not work if the applications requiring them are ported to
other environments. A solution can be represented by DataAvenue [22], a
bridging service capable of connecting jobs to various storage resources using
different protocols and forward the accessed data via HTTP tunneling.

Widening the scope of our analysis, we can see that most of the toolkit
are based on time-proved technologies (i.e. JavaEE), while it is possible
to identify new technologies and different architectural approaches that are
well received by the ICT community. The key aspects are: decomposition
of monolithic Web services in a set of smaller, self contained, REST services
(a.k.a. micro-services) that can be deployed independently; stateless ser-
vices, which simplify load-balancing and resilience. By contrast, the client
side is becoming state-full, with a richer set of functionalities and modular
architecture. Client-side architecture are often based on evolution of the
Model-View-Controller pattern [23], like in the widely adopted AngularJS9

or, more recently, on Flow Based Programming (i.e. React/Flux10 or the
upcoming Angular 211)

The analysis of all these aspects led us to the following considerations:

• None of the previous toolkits provides a satisfactory solution for imple-
menting the extensible and integrated UI able to support the coherent
experiment configuration required by the HM community. On the other
side most of the toolkits provide APIs to interact with the other com-
ponents, in particular users, workflows and jobs management services.
Therefore we decided to create a modular UI with reusable compo-
nents based on AngularJS. We promote reuse of high-level components
to enhance coherence among modules.

9The AngularJS website, https://angularjs.org/
10The Flux website, https://facebook.github.io/flux/
11The Angular 2 website, https://angular.io/

12

• We are migrating to a micro-service architecture, which grant us bet-
ter resilience (load-balancing, fault tolerance) and more decoupled de-
velopment lifecycle. We are still keeping high-value services like the
gUSE DCI Bridge. Nevertheless, we will consider other possibilities, in
particular the future evolution of the RADICAL Cybertools and the
European Open Science Cloud for Research initiative [24].

• The experiments the DRIHM portal supports correspond to workflows
with a simple structure. This, coupled with the lack of dedicated ser-
vices for the HM community do not pose particular constraints on the
adoption of a specific workflow management system except for the re-
quirement of having a data provenance system associated with.

4 From the lesson learned to the DRIHM por-
tal refactoring

The portal revamping has the goal to restructure its architecture, to improve
scalability and maintainability. We decided to adopt an agile methodology,
i.e. with frequent iterative steps [25]. We inherited the most important solu-
tions provided by gUSE, as the DCI Bridge, coupled with new components
to overcome current limits and providing new features.

Figure 2 shows the first step towards the new portal architecture. It
consists of three layers: presentation layer is the DRIHM GUI, application
layer exposes a set of (micro-)services, and foundation layer is responsible for
interaction with DCIs. In details:

• Presentation layer is implemented as a modular Angular.js single page
application, which offers dynamic load of UI modules. UI coherence is
guaranteed by custom directives. It has been completely re-designed on
the basis of developer and user feedback, collected on the first version
of the DRIHM portal.

• Application layer main responsibility is user, data and workflow man-
agement. Currently we have replaced general purpose services (user
management, data persistence and sharing) with node.js REST ser-
vices. Workflow management is still based on the gUSE but we are
evaluating alternatives, e.g. Taverna and custom implementation, be-
cause a strong requirement is the PROV compliance of the experiments.

• Foudation layer is required to dispatch jobs to the available computing
resources. To grant flexibility we need adaptors for a wide set of middle-

13

WS/P-GRADE DRIHM GUI

Work�ow Storage

Data AvenueSecurity

Experiment
con�guration
Model speci�c
con�guration
Model speci�c
administration

gUSE Services

ASM API

Work�ow Interpreter

Work�ow Storage

File Storage

Information System

DCI-BRIDGE

GT5 PBS LSFGLITE LOCAL WEB SERVICE UNICORE CLOUD

SubmissionValidation APIA
ng

ul
ar

 JS

Li
fe

ra
y

Microservices

User Data

Experiment

Figure 2: The DRIHM portal architecture. Green components have been
created ad-hoc for DRIHM, while the blue ones are general-purpose inherited
from gUSE framework.

14

wares. DCI Bridge exposes a well accepted BES interface and supports
a huge set of middlewares/computing resources. Unfortunately such
wide scope makes it difficult to maintain and upgrade. As described
in Section 3 we are monitoring the state-of-the-art and the modular
architecture of DRIHM portal gives us the freedom to easily switch to
an alternative toolset.

In the following subsections we analyze the key elements we have worked
on, i.e. scalability, modularity, flexibility and the design of the new portal
architecture.

4.1 Flexibility

HM simulations require a coherent configuration of all models involved in
a simulation chain. Some constraints are quite obvious: the geographical
domain and the simulated timeframe have to match; other constraints are
related to input data selection (depending on data availability, data format,
spatial and temporal resolution), model configuration (i.e. we can simulate
river flow only on basins on which a model has been calibrated) etc. Model
execution can be extremely time consuming and power hungry: a meso-
scale, high resolution, 1 day meteorological simulation can takes 6-8 hours
on a thousand CPU cores. It is wise to execute the simulation only if the
whole simulation chain is properly configured and can correctly exploit the
simulated rainfall. So we want to be able to perform consistency check ahead
of model execution. To achieve this result, we associate some parameters
(metadata) to each model configuration, and we use metadata to enforce
coherency.

As a consequence, configuration of different model engines should be or-
chestrated, thus requiring some communication among model configuration
modules. In the first version of the DRIHM portal we designed the GUI as
a set of portlets (JSR 286 compliant), to guarantee a coherent integration
with Liferay/gUSE. Direct communication among portlets is impossible, so
we created a workflow among different portlets: at first the user select the
model engines composing the simulation chain (with model-chain portlet),
then, in case of hydrological simulations, she/he select one of the available
model instances. Before moving to the model-specific parameters we have an
additional portlet (chain-wide parameters portlet) asking for parameters that
have to be shared with all models (i.e. timeframe). This approach grants us
a coherent configuration but we have a complex dependency among portlets.
If we need to move a parameter from model specific to chain-wide, we have
to affect all the portlets.

15

Figure 3: Angular directives for model parameter configuration. Domain
selection on the left, and meteo-specific parameters on the right.

While portlets are modular by nature, the dependency relation among
model parameters introduces a tight coupling that could be relaxed with
some kind of portlet communication. In the current version of the DRIHM
portal, designed with Angular.js, we improve modular architecture, effec-
tively decoupling model configurations: we provide a set of Angular direc-
tives (ie. for experiment domain selection, parameters configuration etc.), so
each model UI can benefit from high-level components, able to cooperate and
provide consistency check, together with a coherent UI. Figure 3 shows three
Angular directives. Each directive is composed by a UI element, with all the
logic supporting user interaction, a set of validators (i.e. domain selection
portlet can be configured to enforce sub-domain nesting), and a communi-
cation mechanism to share the acquired value (so other analogous directives
can be configured in a coherent way and/or hidden if the parameter has al-
ready be configured). Thanks to the intra-directives communication, we can
avoid the chain-wide parameter selection step and improve User eXperience
(UX). As a side effect, we perform consistency check at client side, decreasing
server load. The actual submission is still performed via portlet, as shown in
Figure 2, after the validation step.

4.2 Modularity

DRIHM portal has to interact with a complex DCI composed by High per-
formance, Grid and Cloud resources managed by different institutions. Poli-
cies for resource management and software (operative systems, middleware,
libraries) are extremely heterogeneous, and we have to adapt to evolving re-
quirements. Having a large, monolithic, application we simply cannot evolve
fast enough to keep interfaces to external resources up-to-date. Even a mod-
ular architecture with tightly coupled components, or with a lot of inter-
modules dependencies can be problematic: it may force the update of a large

16

set of modules due to dependencies, with related maintainability issues. In
gUSE the DCI Bridge offers a nice modular architecture, but update pol-
icy focus on providing a fully integrated new versions, so to get a new DCI
module you are somehow forced to update the whole gUSE framework.

A modular architecture that really give us the freedom to evolve and
adapt our interfaces to the computing resource is thus required. We need
loosely coupled components that can be updated independently. For this
reason we focused on a microservice-based architecture12. A microservice
architecture is composed by small components. Each component has a clear,
and limited, scope and provides all the features (database, business logic,
interfaces) to fulfil its duties. This lead to fully decoupled services, with
independent lifecycle, cooperating with REST or messaging interfaces. It
is possible to load balance only the services that are under stress, and save
resources otherwise.

We are migrating to a set of independent microservices exposing REST
interface for user management, experiment configuration, data persistency,
data analysis. Currently deployed as linux virtual machines, we are con-
sidering a even lighter container like Docker as in Agave. Figure 2 shows
that the new UI is still tightly coupled with the ASM API for the workflow
management, while it is loosely coupled with services for user management,
data management (persistence and sharing) and experiment configuration
management (grouped in the Microservices box).

Microservices are implemented as node.js + express applications. We
have dependencies among them: the data management micro-service is re-
sponsible for the persistence of experiment configurations, while user and
group management provides authorization services to data and experiment
management, i.e. given a user identity, it can authorize the access to a re-
quested document or experiment configuration. Figure 4 shows the angular.js
GUI of the micro-service for user and group management. Users can login
with different credentials (username and password, facebook id, OAuth), and
be associated with different groups. Their group affiliation is the basis for
user authorization.

4.3 Scalability

gUSE is architected as a JavaEE state-full application hosted in a Tomcat
webapp container. Concurrency is thread-based, thus exploiting a thread
pool. Peak activities, e.g. after an high impact meteorological event as a
flood, result in a heavy load of the system. We tried to overcome this issue

12http://martinfowler.com/microservices/

17

Figure 4: User management is a node.js+express micro-service with an an-
gular.js responsive web interface, a user can belong to several groups.

18

by a proper tune of the thread pool size to balance concurrency and consumed
memory. Moreover we tried to configure the Tomcat Java Virtual Machine
with different maximum memory allocation pool size, finding a sweet-spot
between 2 and 3 GB. Also the load balancing on multiple servers can be
helpful, but is complicated by the state-full nature of the application. We
can somehow load-balance and keep the state-full architecture by using sticky
sessions (so a user is consistently always served by the same server instance),
but this affect the balancing, and does not provide fault tolerance.

For these reasons we switched to a light, state-less, backend based on
node.js with fully async management of concurrent user requests and data
access. While node.js is inherently single-threaded, we can easily get fault-
tolerance and load balancing (either at node level with Passenger and at
cluster level, with the benefit of autoscaling). In fact, in a stateless scenario,
a user request can independently get served by a random server instance.
Session is kept client side and data are consistently fetched from the shared
datastore. A simple architecture based on MongoDB + node.js is providing
excellent response time. In case of increasing workload we are considering a
data cache implemented with an in-memory database (i.e. Redis).

Beside node.js, web application relying on asynchronous programming
are gaining momentum. Asynchronous services are the main feature of web
frameworks like Play! or Vert, and the largest improvement of the recent
JavaEE infrastructure (with Java NIO and Servlet 3.1).

4.4 The new portal architecture

A simulation chain has to deal with several kind of data: model binaries,
model calibrations, configuration parameters, input data (with related ac-
cess policies), intermediate and final results. Since gUSE data management
was really basic, we introduced in the DRIHM infrastructure a few reposito-
ries for keeping model binaries, model instances, input and simulated data.
Access rules are extremely simple: only the data owner in some cases (i.e.
configuration parameters) or community-wide availability (i.e. input and
calibration data).

In details the DRIHM virtual community is composed of different users,
such as HM researchers, public organizations and citizen scientists interested
in HMR and related Earth science disciplines. In particular, three users
categories are envisaged for the DRIHM portal: citizen scientists, scientists
and expert scientists:

• Expert scientists: they have the right to insert model instances and
input data through dedicated services for making them available to

19

the virtual community. This because, for example, the calibration of a
basin for executing hydrological simulation has to be inserted by expert
hydrologists, that can assure the correctness of data and therefore the
scientific validity of simulation results all the scientists can perform.

• Scientists: they have the right to upload new input data for their own
experiments.

• Citizen scientists: they have the right to execute simulations only using
pre-defined scenarios.

In the new release of the portal we are going to grant user- and group-
level data visibility. A persistence microservice, in cooperation with user and
group microservice, provides services for document (JSON) data persistence,
versioning, access policies and sanitization. This microservice has been de-
signed to give the freedom to set accessibility rules to each document, and
thus enable data sharing. We are willing to provide a flexible rules for setting
simulated data visibility.

Beside this, the portal revamping has the further goal to introduce two
new user-driven features: the multi-model ensemble capabilities and collec-
tion of provenance data.

The DRIHM science gateways keeps model configurations as model namelists
(i.e. text files listing parameters as key-value pairs). Such information can
be used to reproduce an experiment in the DRIHM platform. Each namelist
is model specific. To introduce multi-model ensemble capabilities (i.e. the
ability to perform a simulation on the same domain and timeframe with dif-
ferent model engines) we have to support the user in coherent configuration
of all model engines. Given that, multiple simulations can be compared and
analyzed, in order to better capture and understand extreme events. Since
a large set of parameters are common to every models (i.e. geographical
domain, timeframe, . . .) we want to keep a higher-level representation of
model configuration parameters (metadata), so that we can share common
parameters among different models. UI directives are extremely helpful in
providing this feature.

The second strong user request is to model namelist to full provenance
information in PROV standard13: provenance data can be used to track
back the model chain, model engines, model calibrations and parameters
that produced a simulated result. gUSE has been enriched with a module
for provenance data acquisition, but is not yet able to provide a full set of
information. We are looking at Taverna workflow management system, which

13The PROV family of documents http://www.w3.org/TR/prov-overview/

20

is PROV compliant, or at a custom workflow management implementation
adopting Flow-Based-Programming.

5 Conclusions and Future Directions
The first results presented in this paper, is the refactoring of the DRIHM
science gateway for hydro-meteorological simulations. We started from the
experience gained developing the first version of the DRIHM portal, based on
the gUSE toolkit, and we evolved to a more robust yet modular architecture.

To achieve such result, we widened our analysis to the science gateway
frameworks and recent general-purpose technologies, architectural patterns
and best practices adopted in the development of enterprise web application.
In general, the decoupling of the presentation, application and foundation
levels of a gateway and, whenever possible, the split of services in smaller,
more manageable components give science gateway developers more control
and a smoother software development lifecycle. As a side benefit, working
on decoupled components, it is possible to adopt the best technologies for
each component. We are thus evolving the DRIHM portal from a monolithic
toolkit to an ecosystem of components, that are able to cooperate. The
refactoring process is ongoing, and further services have been designed.

In conclusion, current science gateway frameworks should inherit from
the new approaches in developing enterprise web applications a short release
cycle warranted by a modular architecture, better resilience and performance
from small services, cooperating trough REST interfaces, often referred as
micro-services, and more integrated UIs, still modular but more capable.

Given our experience, we suggest to exploit services coming from a single
toolkit for the fast prototyping of a science gateway, while the architecture
can evolve with the introduction of different components, cooperating trough
standard interfaces. This is extremely relevant since input data, computa-
tional resources, middlewares and software components are produced by dif-
ferent entities that have independent policies, roadmap and goals. Moreover,
to tackle these issue there is the need of a strong interplay between ICT
and the domain-specific communities, plus initiatives aiming at the delivery
of a consolidated set of components for science gateways development and
the definition of a sustainable model to evolve the components addressing
partially overlapping and similar needs.

21

References
[1] Seneviratne SI, Nicholls N, Easterling D et al. Changes in climate ex-

tremes and their impacts on the natural physical environment. In: Man-
aging the Risks of Extreme Events and Disasters to Advance Climate
Change Adaptation, Special Report of the Intergovernmental Panel on
Climate Change, 2012; 109-230.

[2] Pappenberger F, Thielen J, Del Medico M. The impact of weather fore-
cast improvements on large scale hydrology: analysing a decade of fore-
casts of the european flood alert system. Hydrological Processes; 25
(7):1091-1113, 2011.

[3] G. Theurich, C. Deluca, T. Campbell et al. The Earth System Prediction
Suite: Toward a Coordinated U.S. Modeling Capability. Bulletin of the
American Meteorological Society, in press.

[4] P. Kacsuk, Z. Farkas, M. Kozlovszky, G. Hermann, Á. Balasko, K.
Karóczkai, and I. Márton, Ws-pgrade/guse generic dci gateway frame-
work for a large variety of user communities, Journal of Grid Computing,
vol. 10, pp. 601 - 630, 2012.

[5] Daniele D’Agostino, Emanuele Danovaro, Andrea Clematis, Luca
Roverelli, Gabriele Zereik, Antonio Parodi and Antonella Gal-
izia, Lessons learned implementing a science gateway for hydro-
meteorological research. Concurrency and Computation: Practice and
Experience, article first published online : 20 SEP 2015. DOI:
10.1002/cpe.3700

[6] D’Agostino D, Clematis A, Galizia A et al. The DRIHM Project: A Flex-
ible Approach to Integrate HPC, Grid and Cloud Resources for Hydro-
Meteorological Research. Proceedings of the International Conference
For High Performance Computing, Networking, Storage and Analysis
2014 (SC14), 2014; 536-546.

[7] Danovaro E, Roverelli L, et al. Setup an hydro-meteo experiment in
minutes: the DRIHM e-infrastructure for hydro-meteorology research.
Proceedings of the International Conference on e-Science (e-Science),
2014; 47-54.

[8] Hally A, Caumont O, Garrote L et al. Hydrometeorological multi-model
ensemble simulations of the 4 November 2011 flash-flood event in Genoa,
Italy, in the framework of the DRIHM project. Natural Hazards and
Earth System Sciences; 15 (3): 537-555; 2015.

22

[9] Hill, C., C. DeLuca, V. Balaji, M. Suarez, and A. da Silva (2004). Archi-
tecture of the Earth System Modeling Framework. Computing in Science
and Engineering, Volume 6, Number 1, pp. 18-28.

[10] J. Kruger, R. Grunzke, S. Gesing, S. Breuers, A. Brinkmann, L. de
la Garza, O. Kohlbacher, M. Kruse, W. E. Nagel, L. Packschies, R.
Muller-Pfefferkorn, P. Schafer, C. Scharfe, T. Steinke, T. Schlemmer,
K. D. Warzecha, A. Zink and S. Herres-Pawlis: The MoSGrid Science
Gateway -ĂŞ A Complete Solution for Molecular Simulations, Journal
of Chemical Theory and Computation, 2014, 10(6), 2232-2245.

[11] Goff, Stephen A. et al., "The iPlant Collaborative: Cyberinfrastructure
for Plant Biology," Frontiers in Plant Science 2 (2011).

[12] Becciani U., Sciacca E., Costa A., Massimino P., Pistagna C., Riggi
S., Vitello F., Petta C., Bandieramonte M. and Krokos M. (2015), Sci-
ence gateway technologies for the astrophysics community, Concurrency
Computat.: Pract. Exper., 27, pages 306-ĂŞ327, doi: 10.1002/cpe.3255

[13] Lawrence K, Zentner M, Wilkins-Diehr N, Wernert J, Pierce M, Marru S,
Michael S. Science gateways today and tomorrow: positive perspectives
of nearly 5,000 members of the research community. Concurrency and
Computation: Practice and Experience 2015; 27(16):4252-4268.

[14] Marlon E. Pierce, Suresh Marru, Lahiru Gunathilake, Don Kushan Wi-
jeratne, Raminder Singh, Chathuri Wimalasena, Shameera Ratnayaka
and Sudhakar Pamidighantam, Apache Airavata: design and directions
of a science gateway framework. Concurrency Computat.: Pract. Exper.
2015; 27:4282-4291

[15] P. Dziubecki, P. Grabowski, M. Krysiński, T. Kuczyński, K. Kurowski,
D. Szejnfeld, Easy Development and Integration of Science Gateways
with Vine Toolkit, Journal of Grid Computing: Volume 10, Issue 4
(2012), Page 631-645

[16] Dooley, Rion, et al. "Software-as-a-Service: The iPlant Foundation
API", 5th IEEE Workshop on Many-Task Computing on Grids and
Supercomputers (MTAGS). IEEE, 2012.

[17] M. McLennan, R. Kennell, "HUBzero: A Platform for Dissemination
and Collaboration in Computational Science and Engineering," Com-
puting in Science and Engineering, 12(2), pp. 48-52, March/April, 2010.

23

[18] SAGA: A Standardized Access Layer to Heterogeneous Distributed
Computing Infrastructure Andre Merzky, Ole Weidner, Shantenu Jha
Software-X, 2015 DOI: 10.1016/j.softx.2015.03.001

[19] Aiftimiei, C.; Aimar, A. ; Ceccanti, A. ; Cecchi, M. ; Di Meglio, A. ;
Estrella, F. ; Fuhrmam, P. ; Giorgio, E. ; Konya, B. ; Field, L. ; Nilsen,
J.K. ; Riedel, M. ; White, J., Towards next generations of software
for distributed infrastructures: The European Middleware Initiative. E-
Science (e-Science), 2012 IEEE 8th International Conference on, pp.
1-10, 2012. DOI: 10.1109/eScience.2012.6404415

[20] EMI Roadmap and DCI Collaborations, Deliverable EMI-NA1-D1.4,
2010, http://cdsweb.cern.ch/record/1277542

[21] Gabor Terstyanszky, Tamas Kukla, Tamas Kiss, Peter Kacsuk,
Akos Balasko, Zoltan Farkas, Enabling scientific workflow sharing
through coarse-grained interoperability, Future Generation Computer
Systems, Volume 37, July 2014, Pages 46-59, ISSN 0167-739X,
http://dx.doi.org/10.1016/j.future.2014.02.016.

[22] Hajnal A, Marton I, Farkas Z, Kacsuk P. Remote storage management
in science gateways via data bridging. Concurrency and Computation:
Practice and Experience 2015; 27(16):4398-4411.

[23] Krasner G. E., Pope S. T. A Cookbook for Using the Model-view Con-
troller User Interface Paradigm in Smalltalk-80. J. Object Oriented Pro-
gram. 1(3):26-49 SIGS Publications, Aug./Sept. 1988

[24] Position Paper: European Open Science Cloud for Research.
http://dx.doi.org/10.5281/zenodo.32915

[25] Beck, Kent, et al. Manifesto for Agile Software Development. [Online]
2001. http://agilemanifesto.org.

24

IMATI Report Series Nr. 16-07

__

Recent titles from the IMATI-REPORT Series:

16-01: Optimal strategies for a time-dependent harvesting problem, G.M. Coclite, M. Garavello, L.V. Spinolo,.

16-02: A new design for the implementation of isogeometric analysis in Octave and Matlab: GeoPDEs 3.0, R. Vázquez.

16-03: Defect detection in nanostructures, D. Carrera, F. Manganini, G. Boracchi, E. Lanzarone.

16-04: A study of the state of the art of process planning for additive manufacturing, M. Livesu, M. Attene, M. Spagnuolo, B.

Falcidieno.

16-05: Calcolo di descrittori ibridi geometria-colore per l’analisi di similarità di forme 3D, A. Raffo, S. Biasotti.

16-06: An appointment scheduling framework to balance the production of blood bags from donation, Seda Baş, Giuliana
Carello, Ettore Lanzarone, Semih Yalçındağ.

16-07: From lesson learned to the refactoring of the DRIHM science gateway for hydro-meteorological research, D. D’Agostino, E.
Danovaro, A. Clematis, L. Roverelli, G. Zereik, A. Galizia.

__

Istituto di Matematica Applicata e Tecnologie Informatiche ``Enrico Magenes", CNR
Via Ferrata 5/a, 27100, Pavia, Italy

Genova Section: Via dei Marini, 6, 16149 Genova, Italy • Milano Section: Via E. Bassini, 15, 20133 Milano, Italy

http://www.imati.cnr.it/

http://www.imati.cnr.it/

