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Abstract. 

 
The use of computer graphics techniques in cultural heritage (CH) has led to impressive improvements in 

technologies related to digital acquisition and rendering of 3D CH data. Digitized artefacts are becoming 

widely available for access and reuse, thus increasing the need of tools able to support comparative shape 

analysis. As 3D artefacts are often worn, eroded and broken, these tools cannot take advantage of existing 

methods based on exact matching but they rather require new approaches able to identify partial features in 

portions of models thus leading to a double partiality of the matching problem, in terms of both features and 

models In this context, we propose a method based on a novel generalization of the Hough transform 

technique able to identify and localize semantic features like anatomical features, ornaments, or decorations 

on digital artefacts or fragments, even if the features are partially damaged or incomplete. The major 

advantages of using a method based on the Hough transform technique are the relative robustness to noise 

and the recognition power also in the case of partial features. Our experiments on digital models of real 

artefacts are encouraging and show the potential of the method, which can work on both 3D meshes and 

point clouds.  
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transform
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July 14, 2016

Abstract

The use of computer graphics techniques in cultural heritage (CH) has led to
impressive improvements in technologies related to digital acquisition and render-
ing of 3D CH data. Digitized artefacts are becoming widely available for access
and reuse, thus increasing the need of tools able to support comparative shape anal-
ysis. As 3D artefacts are often worn, eroded and broken, these tools cannot take
advantage of existing methods based on exact matching but they rather require new
approaches able to identify partial features in portions of models thus leading to a
double partiality of the matching problem, in terms of both features and models In
this context, we propose a method based on a novel generalization of the Hough
transform technique able to identify and localize semantic features like anatom-
ical features, ornaments, or decorations on digital artefacts or fragments, even if
the features are partially damaged or incomplete. The major advantages of using
a method based on the Hough transform technique are the relative robustness to
noise and the recognition power also in the case of partial features. Our experi-
ments on digital models of real artefacts are encouraging and show the potential of
the method, which can work on both 3D meshes and point clouds.

1 Introduction
The use of 3D computer graphics techniques in cultural heritage (CH) has led to im-
pressive improvements in technologies related to digital acquisition and rendering of
3D CH data. A new generation of 3D scanners and digital photography devices has
made possible to capture not only a highly detailed 3D geometry of artefacts, but also
textures and optical material properties [SWRK11,SRT∗14]. Also rendering tools pro-
vide digital reproductions that cannot be distinguished from pictures of the real objects
captured with a real camera and 3D printers can fabricate accurate physical copies,
which replace traditional reproductions.

Making cultural artefacts digitized and widely available for access and reuse is
now becoming a reality, as hypothesized in the EU report New Renaissance [NDL11]
and 3D repositories containing the digital surrogates of artefacts or fragments together
with technical metadata are becoming commonplace [STA, Ham]. Archaeologists can
explore cultural artefacts, both complete objects and fragments, without manipulating
them physically and even if sparse in different museums or collections. These achieve-
ments open new perspectives to a new generation of professionals in the CH domain
(curators, conservators, researchers), they give them significant benefits by allowing
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a ubiquitous access to information from a variety of heterogeneous data sources and
supporting the investigation of findings with other colleagues of different cultural, his-
torical and geographic context.

While in the earlier times of 3D computer modelling application in the CH domain
mainly the object’s geometry and appearance were in the centre of interest, now archae-
ologists are asking that 3D models become a valuable source to support activities of
comparative analysis [PPY∗16]. Some of them are related to re-unification tasks, e.g.
to select fragments belonging to the same archaeological type or to find matching be-
tween fragments for reassembly purposes. Other activities are related to re-association
purposes, to classify objects according to various criteria, e.g., geometric shapes, tex-
tures or semantic features. What is crucial in these tasks is to have at disposal computer
models and tools useful to compare objects and fragments, identify features, filter noise
and degradation, record and model semantic data.

However, several problems make these tasks very complex to be solved. Archae-
ological artefacts are often broken, eroded, worn, or incomplete and their quantity is
extremely vast, distributed and fragmented. Archaeologists have to hypothesize a dy-
namic and unseen past world interpreting partial and inanimate remains of it and to
face with the intrinsic uncertainty of what data represent and the variety of possible
valid descriptions.

Therefore, the nature of archaeological data calls for methods dealing with multi-
modal information in combination (e.g., geometry, pattern, texture, colour, reflectance).
For this reason, there is an increasing number of techniques that complement the geo-
metric analysis with pattern/colour information, for instance to disambiguate fragments
re-assembly [WC08, ASC∗13, KDS10], or to virtually match them [BCFS15].

A further complexity is that global similarity is often not applicable in the CH
domain, as many artefacts are found broken and eroded. In general, the goal is to
detect similar parts on other surfaces, regardless of the global surface this part belongs
to [LBZ∗13]. Recently, some methods for partial similarity evaluation of artefacts
have been devised for specific tasks, such as the retrieval of partially broken pottery
in [SPS15], or looking for complete sub-parts, such as the recognition of object reliefs
or coin stamps [IT11]. Unfortunately, this is not enough general in a broader context.
Indeed, when dealing with broken fragments, a further challenge is to identify, and
locate, partial features in portions of models (for instance, a broken eye in a part of a
head), thus leading to a double partiality of the matching problem, in terms of both
features and models.

Another consideration is that the description of an artefact is usually a text often in-
tegrated with pictures or manual sketches, but completely unrelated to its digital model.
Therefore its semantic features are recognizable or localizable in the 3D model only
through visualization, while they should be attributed to it.

In this paper we propose a method to identify and localize semantic features like
anatomical features, ornaments or decorations on the digital models of archaeological
artefacts or their fragments, even if the features are partially damaged or incomplete.
The focus of our contribution is on the extraction of feature curves from a set of po-
tentially significant points using an extension of the Hough transform technique for
their approximation, producing a family of primitive curves that are flexible to meet
the user’s needs. The method allows the recognition of various features, possibly com-
pound, and the selection of the most suitable profile among the family of algebraic
curves. The major advantages of using a method based on the Hough transform are
the relative robustness to noise and the recognition power also in the case of partial
features. Our experiments on digital artefacts are encouraging and show the potential
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of the method, which can work on both 3D meshes and point clouds.
The remainder of the paper is organized as follows. In Section 2, we describe

previous work on the extraction of feature curves and an introduction to the Hough
transform technique. In Section 3 we explain the steps for extracting peculiar curves
from feature points. Experimental results are shown and commented in Section 4 and
Section 5 concludes the paper.

2 Previous work on feature curves extraction
In computer graphics the extraction of salient features from surfaces or point clouds
has been addressed either in terms of lines [GWM01], shape segments [Sha06] and
descriptions [BDF∗08]. In the case of artefacts, feature curves have been shown to be
quite a flexible choice for representing the salient parts of the model [KIST11, HT11].

A popular choice to locate where the feature curves lie is to estimate the curva-
ture, either on meshes [YBYS08, KST08] or point clouds [GWM01, DIOHS08]). Fea-
ture lines are often characterized as ridges and valleys, thus representing the extrema
of principal curvatures [OBS04, YBYS08]. Curvature is often approximated with fit-
ting methods, either global [OBS04] or local [YBYS08, KK06]. Among the others,
the authors in [KK06] incorporate also colorimetric information addressing the fitting
problem in a six-dimensional space. An alternative approach to locate curvature ex-
trema is to use discrete differential operators [HPW05] or probabilistic methods, such
as random walks [LLZ10]. When dealing with curvature estimation, parameters have
to be tuned according to the target feature scale and the underlying noise. In general,
approaches based on the Moving Least Square method [PKG03] and its variations are
robust to different scale [DIOHS08] and do not incorporate smoothness effects in the
estimation.

Other types of lines used for feature curve representation are parabolic. They par-
tition the surface into hyperbolic and elliptic regions, and zero-mean curvature curves,
which classify sub-surfaces into concave and convex shapes [Koe84]. Parabolic lines
correspond to the zeros of the Gaussian and mean curvature, respectively. Finally,
demarcating curves are the zero-crossings of the curvature in the curvature gradient
direction [KST08, KIST11].

Recently, [APM15] used feature curves to drive fragment reassembly. In their
work, a local estimation method is initially adopted to compute the mean curvature
at each vertex of a mesh using seven scales. Then, salient points are grouped in a curve
skeleton. Finally, user’s interaction is needed to select the group of points to be fitted
with a quadratic spline approximation.

Besides the most popular quadratic splines, the set of curves candidates to fit a
feature line is very large, for instance recently 3D Euler spiral has been proposed as a
natural way to describe line drawing and silhouettes showing its suitability for shape
completion [HT11].

In this sense, our approach follows well established paradigms of characterizing
feature points as curvature or colour extrema but differs from the previous literature
for the novel introduction of an extension of the Hough transform in the 3D domain.
This technique is a standard pattern recognition method to detect profiles in images
using algebraic curves. We briefly explain the method’s main idea starting from its
original use (see [Hou62], [DH72]). Let y− ax− b = 0 (with a,b independent real
parameters) be the equation of a family of straight lines and let p = (xp,yp) be a point
in the image plane. The Hough transform (HT) of p is the straight line of equation
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axp +b− yp = 0 in the parameter plane (the equation now reads in the indeterminates
a,b). Fix now a line l of equation y−Ax−B = 0 (with A,B real values); the usual
point-line duality of projective plane implies that all points p j of l have as Hough
transform lines in the parameter plane intersecting at the unique point (A,B), which
therefore can be used to unambiguously identify the original line l : y−Ax−B = 0.
In the real-world cases, points in the image space appearing as visually aligned are
actually almost aligned (due to noise, to the pixel dimensions, and so on) and this
translates to a “cluster” of crossings of the Hough transforms in the parameter space.
In order to get the instance of the family of lines which best approximates the almost
aligned points, (a region of) the parameter space is discretized and a histogram (usually
called accumulator function) counting the number of crossings is constructed on it.
In the parameter space the discretization cell corresponding to the maximum of the
accumulator function identifies the parameters values of the line best approximating
the given profile.

Since its original conception, the Hough transform has been extensively used and
many generalizations have been proposed for identifying positions of arbitrary shapes,
most commonly circles or ellipses [Bal81]. More recently, the Hough transform tech-
nique has been extended and applied to different families of algebraic curves (see
[BR12] and [BMP13]). This is undoubtedly an advantage of the method, which al-
lows to deal with various shapes, possibly compound, and to choose the most suitable
approximating profile among a broad vocabulary of curves. Another important advan-
tage of the Hough transform method stands in its relative robustness to noise.

3 Selection of curves from feature points
In this section we provide a detailed description of the method that we propose for
extracting peculiar curves from feature points of a given 3D model. To show the char-
acteristics of the method, we have applied it to the analysis of statue’s fragments, focus-
ing on some anatomical features usually highlighted by the curator in the free form text
notes (such as eyes and mouth), but the method is general and could be applied to other
cases (other anatomical features, extraction of patterns, localization of decorations).

We assume that the geometric model of the object is available as a triangulated
mesh with colour, since, nowadays, many sensors are able to acquire not only the ge-
ometry of an object but also its colours. Nevertheless, these working assumptions are
not fully needed by our methodology and can be weakened. The model’s photomet-
ric features, which, if present, contain rich information about the real appearance of
objects (see [TWW01]), can be exploited alone or in combination with the shape prop-
erties for extracting the feature points set. However, if the model has no colour, only the
geometrical information will be used. Further, our methodology does not require any
regularity of the triangulated mesh. Good properties (like watertightness) are needed
requirements of the used software (see Section 3.1), though in principle our approach
is able to handle even simple point clouds. To this end, in our experiments (see Section
4), when dealing with non optimal meshes or point clouds, a preprocessing step will be
adopted.

The methodology, described in Section 3.1-3.4 also through an illustrative exam-
ple, consists of 4 stages that permit us to apply the Hough transform to points instead of
images. First, the feature points are characterized by means of geometric and/or pho-
tometric descriptors (Section 3.1). Then, the selected vertices are divided into smaller
connected components (Section 3.2). The next two steps apply to each computed com-
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ponent: each subset is projected onto its best fit plane (Section 3.3) and a feature curve
is automatically associated, via the HT-based technique, to the 2-dimensional set of
feature points (Section 3.4).

3.1 Feature point characterization
In the general case, when a 3D model with colour is available, we propose a shape
analysis able to extract both geometric and photometric information. The geometric
properties can be easily derived using classical curvature functions, like minimum,
maximum or mean curvatures. Curvature quantities are computed and displayed using
the Matlab Toolbox Graph [Pey]. The photometric properties can be represented in
different colour spaces, such as RGB, HSV, and CIELab spaces. Our choice is to work
in the CIELab space [AKK00], which has been proved to approximate human vision
in a good way. In such space, tones and colours are kept distinct: the L channel is
used for the luminosity which closely matches the human perception of light (L = 0
yields black and L = 100 yields diffuse white), whereas the a and b channels specify
colours, from magenta to green (negative values of a indicate magenta, positive values
of a indicate green) and from yellow to blue (negative values of b indicate yellow,
positive values of b indicate blue). The curvature (Cmin is the minimum curvature, Cmax
the maximum curvature, Cmean the mean curvature and CGauss the Gaussian curvature)
and the luminosity L are used, separately, as scalar real functions, and denoted by
fCmin , fCmax , fCmean , fCGauss , fL respectively. In this section, as illustrative example we use
a 3D modelM derived from a scanned artefact of the STARC repository [STA] (see
Figure 1).

Figure 1: A Salamis terracotta fragment, [STA].

The model M is given as a triangulated mesh (with colour). A representation of
the main curvature functions computed on the modelM is shown in Figure 2 (a)-(d).

The feature points X of the model M are extracted by selecting the regions at
which these functions assume particular values (e.g high maximal curvature and/or
low minimal curvature and/or low luminosity) and this is achieved by simply using
their histograms (see Figure 3).

In particular, in our illustrative example the set X of feature points is obtained by
selecting the vertices of the modelM having low luminosity (smaller than 30%) and
low minimum curvature (smaller than 30%) or high maximum curvature (bigger than
65%), see Figure 4.
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(a) (b) (c) (d)

Figure 2: Values of curvature functions on the modelM: (a) minimum curvature, (b)
maximum curvature, (c) mean curvature, (d) Gaussian curvature.

(a) (b) (c) (d)

Figure 3: Histograms of: (a) minimum curvature values fCmin(M), (b) maximum cur-
vature values fCmax(M), (c) mean curvature values fCmean(M), (d) luminosity values
fL(M).

3.2 Clustering
To highlight the anatomical features of the modelM, the set X of feature points is parti-
tioned into smaller connected components using the DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) method [EKSX96]. DBSCAN is an algorithm
designed to efficiently identify clusters of arbitrary shapes. It relies on a density-based
notion of clusters and noise: the main idea is that each point of a cluster must be sur-
rounded (within a certain distance) by a minimum number of neighbours, that is, the
density in the neighborhood has to exceed some given threshold. The points that do
not satisfy these requirements (i.e. lying in low-density regions) are regarded as noise.
DBSCAN requires two parameters: a real positive number ε, which is the threshold
used as the radius of the density region, and a positive integer i, which is the minimum
number of points required to form a dense region. In order to relate the choice of the
threshold ε to the context, we use the function knnsearch of MATLAB. This function,
based on the algorithm described in [FBF77], finds the k nearest neighbours of each
point of a given dataset. Using it, we can have a clue of the spatial distribution of the
feature points belonging to X, and consequently fix the value of ε. Figure 5 shows an
example of the use of DBSCAN (with ε = 0.2608, the average of the distance of the
20th nearest points, and i = 5) on the feature points X represented in Figure 4. The set
X has been partitioned into 60 clusters (corresponding to different colours, see Figure
5 (a)) and a collection of outliers (see Figure 5 (b)).

3.3 Point cloud projection
This step reduces the problem from the 3-dimensional to the 2-dimensional case. This
operation is not a restriction of our method, but derives from the fact that the features
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Figure 4: Set X of feature points obtained by selecting the vertices ofM having low
luminosity (smaller than 30%) and low minimum curvature (smaller than 30%) or high
maximum curvature (bigger than 65%).

(a) (b)

Figure 5: Partition of the point set X into (a) 60 coloured clusters and (b) noisy points
(in black), applying DBSCAN to X with parameters ε = 0.2608 and i = 5.

contour lines which we are interested to extract (like eyes and mouth) locally present a
well identifiable shape mostly defined by planar curves. The points of each component
Xi resulting from the clustering step (as described in Section 3.2) are processed as
follows: a translation is applied to move the centroid of the points of Xi onto the origin.
Then, a best fitting plane Πi for the points of Xi is found by computing the multiple
linear regression using least squares. We apply a regression function to the matrix X
of size s×2 and the vector Y of size s×1, where s is the number of points, which are
built as follows. The two columns of the matrix X contain the x-and y-coordinates of the
points of Xi, whereas Y contains the z-coordinates of the points. Thus, the best fitting
plane Πi has equation Πi : z−B1x−B2y = 0. Then, the points of Xi are orthogonally
projected on Πi forming the new points set Yi. Finally, the orthogonal transformation
ϕi moving the plane Πi onto the plane z = 0 is defined and applied to points set Yi to
get the new set Zi. Figures 6 (a)-(b) show the output of the whole procedure on the
cluster X22 (coloured in green in Figure 5 (a)); in particular, Figure 6 (b) represents the
set of points Z22 (in black).
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(a) (b)

Figure 6: The procedure of point cloud projection applied to a cluster set: (a) the set
X22 (in green), its best fitting plane and the point set projection Z22 (in black); (b) the
set of points Z22.

3.4 From points to feature curves
To automatically detect feature curves from a selected set of points, we apply a gener-
alization of the Hough transform technique (see [BMP13], [MPCB15], [TB14]). With
respect to the previous literature on images, the application of the Hough transform
to the projected 3D points is novel and do not undergo to grid approximation of the
coordinates of the points. One advantage of this method is the flexible choice of the
family of algebraic curves used to approximate the desired features, thus being adap-
tive to approximate various shapes. In our “vocabulary” the set of primitives includes
many algebraic curves in addition to the more common ones, like straight lines, circles,
ellipses, parabolic lines, etc.

For example, in the case of an eye feature, one interesting family of algebraic curves
is the so-called geometric petal [Shi95] whose shape resembles, for particular values
of the parameters, the eye contour line. Its polar equation is:

ρ = a+bcos2n
θ

with n integer and a,b real numbers. The geometrical petal is a bounded symmetric
curve with a singularity at the origin. Some examples are provided in Figure 7 where
the values of the parameters are set as follows: a = 2, b =−2 and n = 1,10,50,100.

For our purposes, we can restrict to the case b =−a. In this case, we observe that
the curve is completely contained inside the circle of radius

√
2a. We pass to the carte-

sian equation using the standard substitutions ρ =
√

x2 + y2 and cosθ = x/
√

x2 + y2;
further, in order to lower the parameters degree, we replace a by

√
a. The cartesian

equation of the geometric petal is ga(x,y) = 0 where

ga(x,y) = (x2 + y2)2n+1−a[(x2 + y2)n− x2n]2

Most of the times for the extraction/localization of eyes we need a shape which is more
stretched along the x-axis (see Figure 8). We can stretch the geometric petal by scaling
the x-variable by a factor of

√
c, where c is a positive real parameter. The new cartesian

equation of the curve is ga,c(x,y) = 0 where

ga,c(x,y) = (cx2 + y2)2n+1−a[(cx2 + y2)n− cnx2n]2
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Figure 7: Geometric petal curve with a = 2, b = −2 and: (a) n = 1, (b) n = 10, (c)
n = 50, (d) n = 100.

Some observations on the geometry of the geometric petal curve allow us to recover
the value of the exponent parameter n, which has to satisfy the following condition:

2n
2n+1

(
1− n

√
1

2n+1

)1/2

=
yB

yA

where yA and yB are the y-coordinates values of the points A and B (see Figure 8). Ap-
plying the previous considerations and the HT-based procedure to the family ga,c(x,y)=
0 and the set Z22 (see Figure 6 (b)), we get a curve defined by parameter values n = 78,
a = 6.4168 and c = 0.8162 (see Figure 9 (a)).

If we are looking for a mouth feature, another interesting shape is given by the
sextic surface of equation

a4(x2 + z2)+(y−a)3y2 = 0

-2,5 -2 -1,5 -1 -0,5 0 0,5 1 1,5 2 2,5 3

0,5

1

1,5

2

2,5

3

A

B

-2,5 -2 -1,5 -1 -0,5 0 0,5 1 1,5 2 2,5 3

0,5

1

1,5

2

2,5

3

A

B

(a) (b)

Figure 8: Geometric petal curve defined by ga,c(x,y) = 0 with a = 4, n = 50 and: (a)
c = 1, (b) c = 1/2.
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(a) (b)

Figure 9: Point set Z22 and (a) the geometric petal curve (in red) of equation ga,c(x,y)=
0 with parameters n = 78, a = 6.4168 and c = 0.8162, (b) the circumference centered
at (0,1) with radius 11/20.

with a real parameter, called the zitrus (or citrus) surface by Herwig Hauser [Ima].
The citrus surface has bounding box ((− a

8 ,
a
8 ),(0,a),(−

a
8 ,

a
8 )), centroid at (0, a

2 ,0)
and volume 1

140 πa3. We are interested in an orthogonal section of the citrus surface
(cutting with the plane x = 0 or z = 0). Applying a rotation of π/2 and centering the
curve at the origin we obtain the citrus curve of equation fa(x,y) = 0 where fa(x,y) is
the following sextic polynomial

fa(x,y) = a4y2 +
(

x− a
2

)3(
x+

a
2

)3

with a real number (see Figure 10 (a)). The citrus curve is a symmetric bounded curve
with bounding box ((− a

2 ,
a
2 ),((−

a
8 ,

a
8 )).

-1,25 -1 -0,75 -0,5 -0,25 0 0,25 0,5 0,75 1 1,25

-0,75
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0,25

0,5

0,75
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-0,5

-0,25

0,25

0,5

0,75

(a) (b)

Figure 10: The citrus curve of equation: (a) fa(x,y) = 0 with a = 2, (b) fa,c(x,y) = 0
with a = 2, c = 1/2.

Most of the times for the localization of eyes and/or mouth we need a shape which
has a different ratio. To this aim, we introduce another citrus curve whose equation is
fa,c(x,y) = 0 (which is simply stretched or shortened along the y-axis) where fa,c(x,y)
is given by:

f (x,y) = a4c2y2 +
(

x− a
2

)3(
x+

a
2

)3

with a,c real numbers (see Figure 10 (b)). Note that this is again a symmetric bounded
curve with bounding box ((− a

2 ,
a
2 ),((−

a
8c ,

a
8c )).
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Other more obvious but likewise interesting families of algebraic curves are el-
lipses, circles and straight lines, which can be exploited to detect for instance eyes con-
tours, pupils shapes and lips lines. Their equation are quadratic (ellipses and circles)
and linear (straight lines) and depend on 3 parameters at most. Applying the HT-based
procedure to the generic family of circumferences and the set Z22 (see Figure 6(b)), we
get the curve of equation (x+2/25)2 +(y−2/25)2− (11/20)2 = 0 (see Figure 9(b)).

To grasp compound shapes, it is possible to use different curves. For instance, to
extract the eye shape in its entirety we can detect a circumference and successively a
geometric petal curve (see Figure 11 (a)), taking advantage of the circumference’s po-
sition and dimension for restricting the parameters space of the geometric petal curve.
Another approach is to define a more structured family of algebraic curves starting

(a) (b)

Figure 11: Combined shapes: (a) a circumference and a geometric petal curve detecting
an eye; (b) a citrus curve with a line detecting a mouth.

from two or more simple families. This is the case of the mouth contour which can be
detected combining a citrus curve with a line: to this aim we introduce the family of
algebraic curves defined by ha,c(x,y) = 0 where:

ha,c = y(a4c2y2 +
(

x− a
2

)3(
x+

a
2

)3
).

An example of this detection is represented in Figure 11(b). This second approach has
the clear advantage of simultaneously detecting compound features with the inconve-
nient of handling more complex families of algebraic curves (that is, defined by higher
degree polynomials).

4 Experimental results
The proposed methodology has been tested on a collection of artefacts collected from
the STARC repository [STA] and the AIM@SHAPE repository [EC15]. Figure 12
contains images of the chosen models: the models of cases A and B are taken from
[EC15], whereas the models of cases C, D, E and F are taken from [STA].

All the models, except model D, are available as triangulated meshes; model D is
given as a point cloud set. In the cases A, B and C the colour is not available, so only the
geometrical information (via maximum and minimum curvature functions) is used to
extract the feature points set. In the remaining cases the geometry is combined with the
chromatic information. In all the cases, the models position inside the 3-dimensional
space is completely random and a “best" view is artificially reported in Figure 12,
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columns 1 and 2, for reader’s convenience. Further, to lower the computational costs,
the number of vertices of the models original meshes is reduced using the MeshLab
function Quadric Edge Collapse (with texture) [Vis].

Experiments represented in Figure 12 are aimed to the extraction of eyes. The pa-
rameters’ values of the detected curves are gathered into three tables: Table 1 contains
the parameters of the citrus curves, Table 2 contains the centers and the radii of the
circumferences, and Table 3 contains the degree and the parameters of the geometric
petal curves.

Model a c
A - right eye 31 0.23
A - left eye 30 0.23

Table 1: Parameters of detected citrus curves.

Model radius
A - right eye 3.633
A - left eye 3.661
E - right eye 0.283
E - left eye 0.3

Table 2: Radius of detected circumferences.

Model n a c
B - right eye 50 308.25 1.4484
B - left eye 50 245 0.7503
C - right eye 45 1115 0.6738
C - left eye 45 993 0.7334
D - right eye 75 3.12 0.5855
D - left eye 75 3.05 0.8306
E - right eye 75 1.08 0.6675
F - right eye 75 1.08 0.7141

Table 3: Parameters of detected geometric petal curves.

The contours of the two eyes are independently detected in the cases A-D. The
parameters of the detected citrus curves for the model A are very similar for the right
and the left eye (see Table 1). As for the detected geometric petal curves, a proper
comparison should involve the square roots of the parameters values reported in Table
3, since

√
a and

√
c completely mark out the curve (see Section 3.4). An interesting

phenomenon is presented by case D: the values of the parameter a are nearly the same,
meaning that the two eyes heights are approximately the same, whereas a difference
can be noticed in the values of the parameters c, which can be ascribed to the partiality
of the left eye. The left and right pupils are visible and independently extracted in the
cases A and E: the parameters which makes sense to compare are the circumference
radii which are approximately the same in each model (see Table 2). Due to faded
colours, in models E and F the left eye contours are difficult to be extracted: the geo-
metric petal curves obtained from the right eyes are used to properly recognize the left
eye shape (see Figure 12).
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A.

B.

C.

D.

E.

F.

Figure 12: Detection of eye contours and pupils on collection of artefacts collected
from the STARC repository [STA] and the AIM@SHAPE repository [EC15].
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It is important to point out how close the parameters of the models E and F are, this
suggesting that the proposed method could be used to extract the parameters which
characterize a style and that may possibly be employed for eyes’ detection on other
artefacts of the same collection. As for the cases C and D, we observe that the pa-
rameters are not comparable to each other neither to those of A and B since the eyes
dimensions are not uniformly scaled.

Figure 13 reports experiments on the detection of mouth contours: the first exper-
iment involves model A whose mouth is detected via a geometric petal curve of pa-
rameters n = 50, a = 156 and c = 0.3444 (see Figure 13 (a)); in the second experiment
model F is considered and its mouth is represented via a citrus curve of parameters
a = 2.15 and c = 0.9 (see Figure 13 (b)).

(a) (b)

Figure 13: Detection of mouth contours of models A and F of Figure 12: (a) geometric
petal curve of parameters n = 50, a = 156, c = 0.3444; (b) citrus curve of parameters
a = 2.3, c = 0.95.

5 Conclusive remarks
This paper presents a novel method to identify features like anatomical characteris-
tics or decorations in digital artefacts or fragments, even if the features are partially
damaged or incomplete. We have shown how the method can be applied to fragments
arbitrarily embedded in the 3D space and that the only assumption is that the features
can be locally projected on a plane. In this way, we have introduced a novel general-
ization of the Hough transform applied to 3D curves extracted from a set of potentially
significant points of the input digital model. In the experiments we mainly focused
on the detection of anatomical features because more affected by shape variability and
therefore complex with respect to geometric decorations such as the ornaments shown
in Figure 15. In this case, the decoration is a repeated pattern of leaves (Figure 15(a,b),
each one identified with a specific cluster (Figure 15(c)) and approximated by a citrus
curve (Figure 15(d)).

The major advantages of this method are the relative robustness to noise, the recog-
nition power also in the case of partial features and the possibility of working on both
3D meshes and point clouds. In addition, it is important to point out that it similarly
parametrizes features that are comparable, see for example the left and right eyes of
the head of Figure 12 A, and the eyes of the two heads of Figure 12 E and F. Another
interesting point is the possibility of recognizing compound features, as for the eye
contour and the pupil.
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Furthermore, as we extract a feature pattern and its parameters, we can use them
to build a template useful for searching similar features in the artefacts, even if heavily
incomplete. This strategy has been used for example to locate the broken eye in the
model of the object depicted in Figure 1. Thanks to the identification of the right eye,
the geometric petal obtained (Figure 14-(a) ) has been used to detect the shape of the
damaged left eye (Figure 14-(b)).

(a) (b)

Figure 14: Geometric petal obtained for the right eye (a) used to detect the shape of the
damaged left eye (b).

As a minor drawback, we point out that the use of more complex algebraic curves
may involve more than three parameters which has consequences in the definition and
manipulation of the accumulator function, which becomes computationally expensive,
but ad-hoc methods have been introduced to solve it (see [TB14]).

(a) (b)

(c) (d)

Figure 15: Detection of a decorative pattern on an artefact of the STARC repository
[STA]: (a) the original model, (b) a portion of the model, (c) clusters of feature points
and (d) detection of an elemental decoration with a citrus curve of parameters a = 0.95
and c = 1.2.
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