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Abstract. 

Digital environmental data are becoming commonplace and the amount of information they provide is huge, yet 

complex to process, due to the size, variety, and dynamic nature of the data captured by sensing devices. The paper 

discusses an evaluation framework for comparing methods to approximate observed rain data, in real conditions of 

sparsity of the observations. The novelty brought by this experimental study stands in the geographical area and 

heterogeneity of the data used for evaluation, aspects which challenge all approximation methods. The Liguria 

region, located in the north-west of Italy, is a complex area for the orography and the closeness to the sea, which 

cause complex hydro-meteorological events. The observed rain data are highly heterogeneous: two data sets come 

from measured rain gathered from two different rain gauge networks, with different characteristics and spatial 

distribution over the Liguria region; the third data set come from weather radar, with a more regular coverage of the 

same region but a different veracity. Finally, another novelty of the paper is brought by the proposal of an 

application-oriented perspective on the comparison. The approximation models the rain field, whose maxima and 

their evolution is essential for an effective monitoring of meteorological events. Therefore, we adapt a storm 

tracking technique to the analysis of the displacement of maxima computed by the different methods. 
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Abstract

Digital environmental data are becoming commonplace and the amount of infor-
mation they provide is huge, yet complex to process, due to the size, variety, and
dynamic nature of the data captured by sensing devices. The paper discusses an eval-
uation framework for comparing methods to approximate observed rain data, in real
conditions of sparsity of the observations. The novelty brought by this experimental
study stands in the geographical area and heterogeneity of the data used for evalua-
tion, aspects which challenge all approximation methods. The Liguria region, located
in the north-west of Italy, is a complex area for the orography and the closeness to
the sea, which cause complex hydro-meteorological events. The observed rain data
are highly heterogeneous: two data sets come from measured rain gathered from two
di↵erent rain gauge networks, with di↵erent characteristics and spatial distribution
over the Liguria region; the third data set come from weather radar, with a more
regular coverage of the same region but a di↵erent veracity. Finally, another novelty
of the paper is brought by the proposal of an application-oriented perspective on
the comparison. The approximation models the rain field, whose maxima and their
evolution is essential for an e↵ective monitoring of meteorological events. Therefore,
we adapt a storm tracking technique to the analysis of the displacement of maxima
computed by the di↵erent methods.

1. Introduction

The large amount of digital data provides an extremely rich, yet di�cult to pro-
cess, amount of information about our environment, geographic and meteorological
phenomena. The geographical area selected for presenting our results, the Liguria
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region in Italy, is an exemplary case study: the articulated orography is character-
ized by many small catchment basins that are highly influenced by local maxima of
precipitation. Moreover, the proximity to the sea causes additional problems during
storms, concurring to the creation of secondary low pressure areas, also known as
the Genova Low, which increases the amount of precipitation and the risk of critical
flash floods. The continuous observation of rain data during critical events, as well as
the analysis of historical time series of precipitation, are definitely crucial to support
a better understanding and monitoring of hydro-geological risks, such as floods and
landslides (Keefer et al., 1987; Hong et al., 2007; Wake, 2013; Hou et al., 2014). A
robust approximation method, resilient to errors, is therefore highly desirable.

In this context, the paper presents the results of the evaluation of three approxi-
mation techniques, which give insights into their suitability to capture the behaviour
of precipitation events: LR (Locally Refinable) B-Splines and meshless approxima-
tion with kriging, and Radial Basis Functions (RBFs). The comparison of methods
for rainfall approximation has been addressed in the literature both at the theoreti-
cal level (Scheuerer et al., 2013) and for domain-specific analysis (Skok and Vrhovec,
2006). Our study contributes to this topic extending the analysis to another ap-
proximation technique, LR B-Splines, and using a new setting for the comparison,
inspired by the theory of topological persistence (Edelsbrunner et al., 2002). The
basic idea is that in order to characterize precipitation events, it is important to
focus on the main features of the rainfall fields and their configuration, discarding
irrelevant details that do not contribute to understanding the overall event structure.
With this motivation in mind, the prominence of precipitation maxima is measured
through the notion of persistence, which allows for hierarchically organize maxima by
importance, and possibly filter out irrelevant (i.e., non-prominent) ones. Based on
this discussion, we developed a criteria to compare di↵erent approximation methods
based on the analysis of the number and location of the most prominent maxima
they produce.

Finally, we remark the focus on the evaluation of approximation performance in
real conditions of sparsity: the number of the measuring gauges is quite low with
respect to the area covered and their distribution is quite uneven. The evaluation
results give also insights on the influence of integrating radar data in the approxima-
tion: rain data extracted from radar measures provide a complementary information
with respect to rain gauges, less accurate but with a wider and more stable coverage.
The integration of measured rain and radar data makes give insights on the reliance
on radar-driven approximations in case of failures of some rainfall stations during
heavy storms.

For this study, we considered LR B-Spline and two meshless approximation, krig-
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ing and radial basis functions. The reason for this choice is to understand the per-
formance of approximation methods, LR and RBF, which have been used mostly in
computer graphics up to now, but which have interesting properties for this appli-
cation. Kriging has been selected as well as it is among those most widely used in
the application domain, together with other methods such as the inverse distance
weighting. The latter, moreover, seems to be less performant to the specific case
studies (sparsity conditions), while other possible choices as the Poisson interpola-
tion could cause a too high smoothing e↵ects; in both cases, we know a-priori that
many details are lost.

LR B-Splines are particularly useful as a compact representation of functions
over large domains: they use a (locally) regular domain parameterization and can
be locally refined according to the required approximation error. Ordinary kriging
is a very well-known approximation method which uses a variogram capturing the
spatial distribution of the data. Similarly, RBFs use a kernel, which can be also
adapted to the spatial distribution of the data, through the selection of the kernel
width. The three approximation methods define slightly di↵erent functions, whose
behaviour is studied both at the numerical level (accuracy, sensitivity to sparseness,
computational issues) and at a qualitative level by measuring the di↵erences among
the configuration of precipitation maxima induced by the three techniques.

The comparative study was conducted selecting Liguria as area of interest, and
two precipitation events recorded on September 29, 2013 and January 17, 2014,
characterized by di↵erent meteorological situation and events. For the latter event,
we also used rain data extracted from weather radar acquisition.

To contextualize better the comparison, we start with a short overview of re-
lated work on rain observation methods, approximation and comparison techniques
(Sect. 2). We present the setting adopted for the evaluation with details on the rain
event and metrics used for the comparison (Sect. 3). We give the formal definition of
the three approximation methods discussed (Sect. 4) and discuss their performances
with respect to accuracy, behaviour with respect to sparsity, and computational as-
pects (Sect. 5). Then, the approximation schemes are compared by analyzing the
di↵erence in the configuration and prominence of the detected maxima (Sect. 6).
Finally (Sect. 7), we summarize our study.

2. Related work

Measuring rainfall data. Rainfall intensities are traditionally derived by measuring
the rain rate through rain gauges, weather radar, or by measuring the variations in
soil moisture with micro-wave satellite sensors (Brocca et al., 2014). Even though
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satellite precipitation analysis allows the estimation of rainfall data at a global scale
and in areas where ground measures are sparse, the evaluation of light rainfalls is gen-
erally di�cult, thus generating an underestimation of the cumulated rainfalls (Kucera
et al., 2013). To bypass this issue, in (Brocca et al., 2014) the soil water balance
equation is applied to extrapolate the daily rainfall from soil moisture data. The
integration of rainfall data at regional and local levels is also intended to provide a
more precise approximation of the underlying phenomenon on urban areas, which
are sensitive to spatial variations in rainfalls (Segond, 2007). The combined use of
rain height measured at rain gauges and radar-derived ones provides locally accu-
rate but spatially anisotropic measures (around gauges) with globally distributed
detailed data. Furthermore, we mention that the spatial and temporal variations
(e.g., speed, direction) of rainfalls are important to characterize their variability and
peaks, together with their e↵ects on catchments.

Approximating rainfall data. Di↵erent approaches have been used for the approxi-
mation of rainfall data. In (Thiessen, 1911), rainfalls recorded in the closest gauge
are associated with unsampled locations, by identifying a Voronoi diagram around
each weather station and assigning the measured rainfall to the respective Voronoi
cell. Back to the 1972, the U.S. National Weather Service proposed to estimate the
unknown rainfall values as a weighted average of the neighbouring values; the weights
are the inverse of the squares of the distances between the unsampled locations and
each rainfall sample. The underlying assumption is that the samples are autocorre-
lated and their estimates depend on the neighbouring values. This method has been
extended in (Teegavarapu and Chandramouli, 2005) through the modified inverse
distance and the correlation weighting method, the inverse exponential and nearest
neighbour distance weighting method, and the artificial neural network estimation.
In (McRobie et al., 2013), storms are modelled as clusters of Gaussian rainfall cells,
where each cell is represented as an ellipse whose axis is in the direction of the
movement and the rainfall intensity is a Gaussian function along each axis (Willems,
2001).

McCuen (McCuen, 1989) proposed the isoyetal method that allows the hydrolo-
gists to take into account the e↵ects of di↵erent factors (e.g., elevation) on the rainfall
field by drawing lines of equal rainfall depths among the rain-gauges and taking into
account the main factors that influence the distribution of the rain field. Then, the
rainfalls at new locations are approximated by interpolation starting from the iso-
hyets. Geo-statistical approaches allow us to take into account the spatial correlation
between neighboring samples and to predict the values at new locations (Journel and
Huijbregts, 1978; Goovaerts, 1997, 2000). Furthermore, the geo-statistic estimator
includes additional information, such as weather-radar data (Creutin et al., 1988;
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Azimi-Zonooz et al., 1989) or elevation from a digital model (Goovaerts, 2000; Di Pi-
azza et al., 2011).

For our experimental study, we selected kriging as the representative of the best-
known and widely used methods. Also, we decided not including the inverse distance
weighting and the Poisson interpolation, respectively, for the low and high smooth-
ness of the resulting interpolating function. Instead, we decided to experiment and
compare two methods that have not been applied, to our knowledge, in this applica-
tion domain already, to see if they could bring new insights or provide a more robust
handling of highly dynamic and complex events as those observed in Liguria.

Comparing rainfall data approximations. For the comparison of the precipitation
fields originated from di↵erent approximation schemes, we have adopted a number
of standard metrics to assess their di↵erences. Moreover, we have extended the
evaluation approach by comparing the di↵erences in the configurations of meaningful
features of the precipitation fields, namely prominent maxima. The motivation for
this evaluation is that precipitation maxima convey important information for storm
tracking, a crucial analysis of dynamic measures of rain data, where meaningful
features associated with distinct time frames, are matched to track their evolution
along time.

There is a rich and interesting literature on storm tracking, mostly using a region-
based approach, where regions in radar images are characterized by high reflectivity
and su�ciently large area. Various characteristics of these regions, such as centroids,
area, major/minor radii, and orientation, are computed, see for instance (Laksh-
manan and Smith, 2009; Dixon and Wiener, 1993; Han et al., 2009). However, we
underline that the focus of the paper is not storm tracking. Indeed, we use the storm
tracking measure recently proposed in Biasotti et al. (2015) for the comparison of
the di↵erent fields. The approach is based on a topological analysis of rainfall data,
which focuses on the most prominent precipitation maxima instead of regions. In-
deed, the granularity of the analysis is more appropriate for the characteristics of
the geographic area selected; at the same time, the introduction of an ad-hoc dis-
tance, combining geographical distance and the measured rainfall di↵erence, allows
for matching and tracking prominent maxima along time. The same strategy for
matching maxima is used in this paper to evaluate the displacement of the max-
ima of the di↵erent approximated fields, treating them as if they were snapshots at
di↵erent times.
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3. Case studies and evaluation metrics

The area selected for the evaluation is the Liguria region, in the north-west of
Italy. Liguria can be described as a long and narrow strip of land, squeezed between
the sea, the Alps and the Apennines mountains, with the watershed line running at
an average altitude of about 1000 m. The orography and the closeness to the sea
make this area particularly interesting for hydro-meteorological events, frequently
characterized by heavy rain due to Atlantic low pressure area, augmented by a sec-
ondary low pressure area created by the Ligurian sea (Genova Low). Moreover the
several and small catchments are causing fast flooding events, and even small rivers
exhibit high hydraulic energy due to the quick variation of altitude. This is the
main motivation behind our analysis, which targets the understanding of the best
approximation method to capture important and potentially dangerous precipitation
events.

3.1. Rainfall stations and radar data

In Liguria, observed rainfall data are captured by two di↵erent rain gauges net-
works. The first rain gauge network is owned by the ARPAL team of Regione Liguria,
and consists of 143 professional measure stations distributed over the whole region;
the measures are acquired every 5-20 minutes, and the stations are connected by
GPRS and radio link connection, producing about 2 MB data per day. The second
rain gauge network is owned by the Genova municipality and consists of 25 semi-
professional measuring stations spread within the city boundary; the acquisitions
are done every 3 minutes, and the stations are linked by GPRS or LAN connections,
with an average production of 1Mb data per day. The configuration of the rain gauge
networks is shown in Fig. 1.

The two rain gauge networks act as sampling devices of the true precipitation
field, working at two di↵erent scales, that is, at two di↵erent spatial and temporal
distributions. Since the temporal interval is di↵erent for each network, we have cu-
mulated the station rainfalls to a step of 30 minutes. This selection is also motivated
by the desire to produce a fine-grained evaluation of the approximation methods in
the perspective of a real-time precipitation monitoring. Note that the cumulated
interval is a much smaller than the one used in (Skok and Vrhovec, 2006), where an
interval of 24 hours was used. Concerning the precipitation events, we selected two
di↵erent rainy days, September 29, 2013 and January 17, 2014. The first was char-
acterized by light rain over the whole Liguria and 2 di↵erent rainstorms that caused
local flooding and landslides, without damages. The second was characterized by the
transit of di↵erent fronts with well distributed rain, and was part of a rainy period
that caused several deaths and a train derail. The maximum rain-rate over all time
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step is 60mm/300 and the average rain-rate is 1.12mm/300. For the second event,
we also used the rainfall measured every 10 minutes provided by the polarimetric
weather radar of Liguria, deployed by ARPAL. The radar scans cover an area of
about 134km, and the rainfall measures extracted from the scan are sampled on a
grid with 1 km of resolution.

In addition to real data, we adopt also a synthetic rain field as an additional
ground-truth defined using a module of the GRASS-GIS software, which produces
a fractal field based on spectral synthesis methods (Saupe, 1988) (Fig. 2). The
generated values have been scaled to be in the range of the rainfall values. To
simulate a set of rain gauges, we sample the synthetic rainfall field with 200 points,
randomly placed in a grid that contains Liguria. The goal here is to evaluate how the
fields obtained with the three methods are far from the synthetic one in the whole
grid.

3.2. Evaluation settings

To establish a formal evaluation setting, let us formulate the problem of rainfall
approximation as follows. Given a set of points P := {pi}ni=1, let us call f : P ! R
the precipitation field, known only at the n sample points in P , which represent
the positions of the measurement instruments and/or the nodes of the regular grid
associated with the radar image. An approximation of f is defined as F : R2 ! R
such that d(F (p) � f(p))  ✏ for some required distance d(·, ·) and threshold ✏.
When d(F (p) � f(p)) = 0 the approximation is an interpolation of f . The map F
can be used to evaluate the value of the precipitation at any point other than those
in P , with results di↵ering according to the approach used to define F . In our case,
we will consider three di↵erent F approximation functions.

To compare the approximations, we adopt a cross-validation strategy, exploiting
the sets of data we have at regional and municipality level. Every rainfall station
at pi is iteratively turned o↵, that is, it is not used in the computation of F ; the
resulting approximation function F is sampled at that position pi and compared
with the rain value measured at pi, which acts as a ground truth (leave-one-out
strategy). Then, the rainfall data measured by the municipality stations are used
as ground-truth to validate the values approximated from the ARPAL data set: in
this setting, the cross-validation aims at evaluating the capability of the di↵erent
methods to estimate the local features of rain fields interpolated over a sparse data
set, with di↵erent spatial distribution.

The comparative study also includes the analysis of the spatial configuration
of local maxima extracted from the rainfall fields produced by each approximation
scheme. In this case, local maxima are endowed with a notion of prominence bor-
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(a) (b)

Figure 1: (a) Input rainfall measures at 143 stations (regional level, white points) and 25 stations
(municipality level, red circles). (b) Map of the maximum rain rate recorded at each weather
station, which highlights that only the central west of the region has been involved by heavy rain
and the remaining part were interested by drizzle.

rowed from topological persistence, which is used to quantify the importance that a
maximum has in characterizing the associated rainfall field.

For this set of experiments, the approximated precipitation fields were discretized
at the vertices of a digital terrain model, which is coming from the SRTM (Shuttle
Radar Topography Mission (Farr et al., 2007)), available in public domain at the
URL http://www2.jpl.nasa.gov/srtm/, and with a spatial resolution of 100 mt.

4. Theoretical background

In the following, we give an overview of the three approximation methods com-
pared and of the persistence analysis framework used to analyse the evolution of
precipitations.

4.1. Approximation schemes

LR B-Splines. The rainfall values are parameterized on the xy-values of the corre-
sponding geographic location and the rainfall is approximated by a 2.5D LR B-spline
surface (Dokken et al., 2013). Similar to tensor product B-spline surfaces, the LR
B-spline surfaces are defined from basis functions (B-splines) which have local sup-
port. The approximation of the rainfall data is performed by an iterative procedure
starting from a lean tensor-product B-spline surface being constantly equal to zero.
For each iteration the distance between the current surface and the rainfall data is
computed, the surface is refined locally where a given tolerance is not met, and the
surface coe�cients are updated using Multilevel B-spline approximation (MBA) (Lee
et al., 1997) adapted for LR B-splines. The MBA method is a local and explicit ap-
proximation method, where the surface coe�cients are updated based on the data
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Figure 2: The synthetic field and the position of the 200 random rain gauges (black dots) used as
ground truth for the evaluation of the approximation schemes. The values of the field varies from
0 (blue) to 6.94 (yellow)

points situated in the support of the corresponding B-spline. The performance de-
pends on three components, which are done at each iteration step: refinement of
the LR B-spline, distance computations, and update of the surface coe�cients. The
latter two elements are the most time consuming. For each iteration, the coe�cients
are updated twice and one additional distance computation is performed. Let the
number of data points be N . The number of non-zero B-splines for each data point
varies, but will be in the magnitude of (d1 + 1) ⇥ (d2 + 1) where d1 and d2 are the
polynomial degrees in the two parameter directions of the surface. The surface is
bi-quadratic so d1 = d2 = 2. In our tests, the algorithm is run with 20 iterations
giving a total of 3⇥ 20⇥N ⇥ 9 bi-variate B-spline evaluations.

Implicit approximation with Radial Basis Functions. The implicit approximation
computes the map F (p) :=

Pn
i=1 ↵i'i(p) as a linear combination of the basis B :=

{'i(p) := '(kp � pik2)}ni=1, where ' is the kernel function (Aronszajn, 1950; Dyn
et al., 1986; Micchelli, 1986; Patanè et al., 2009). Depending on the properties of ',
we distinguish globally- (Carr et al., 2001; Turk and O’Brien, 2002) and compactly-
(Wendland, 1995; Morse et al., 2001) supported radial basis functions. Then, the
coe�cients (↵i)ni=1 solve a n ⇥ n linear system, which is achieved by imposing the
interpolating constraints F (pi) = f(pi), i = 1, . . . , n. Since a n⇥ n linear system is
solved once, the computational cost of the approximation with globally- and locally-
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supported RBFs is O(n3) and O(n log n), respectively. In our experiments, we have
chosen the Gaussian kernel '(st) := exp(�st), which has a global support; in fact, its
fast decay makes it suitable to approximate rainfalls with a sparse spatial distribu-
tion and that change quickly in time. To this end, the width of each basis function is
automatically adapted to the local sampling density by selecting its width according
to the local spatial distribution of the rainfall stations (Dey and Sun, 2005; Mitra
and Nguyen, 2003).

Kriging. The previous two approximation methods do not take into account in an
explicit manner the correlation among observations, which may have unwanted e↵ects
especially in the case of unevenly distributed observations. Furthermore, there is
no natural mechanism for propagating the individual quality of the observations
into a quality description of the estimation. A class of methods that takes care
of these issues is kriging, (Wackernagel, 2003), which is a common technique in
environmental sciences and a special case of the maximum likelihood estimation. The
underlying assumptions are that the quality of the observations is given as variance
values, and that the covariance between observations only depends on their mutual
spatial or temporal distance, and not on their location. Formally, kriging is expressed
as F (p) :=

Pn
i=1 !if(pi), where the weights ! := (!i)ni=1 are the solution to the linear

system C! = d, where C is the covariance matrix of the of the input points, d is the
array of the covariance between the positions of the rainfall stations and the points
that belong to a neighborhood of the sample point. The covariance is expressed
by the variogram model, which reflects the priors on the spatial variability of the
values. The main problem with kriging is the low computational e�ciency, as the
solution of the linear systems scales quadratically with the number of observations.
In the implementation used, the problem is addressed by combining kriging with
deterministic spatial division techniques, which e�ciently restrict the number of
observations to the closest ones. More specifically, the Kd-tree is used to select only
the 20 closest neighbors for the matrix inversion and in our tests we have used a
constant variogram, whose nugget is set equal to 10% and the range is 30 Km. Fig. 4
shows the results obtained by kriging when radar rain data are integrated.

4.2. Prominent rainfall maxima via persistence analysis

The importance of precipitation maxima is evaluated by means of the persistence
analysis. Given a scalar field F : M ! R (e.g., the interpolated rainfall field),
persistence analysis is used to study the evolution of the connectivity in the superlevel
sets Mt = {p 2 M : F (p) � t}, for t 2 (�1,+1). Sweeping t from +1 to �1,
new connected components of Mt are either born, or previously existing ones are
merged together. A connected component C is associated with a local maximum p
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(a) (b) (c)

Figure 3: Rainfall fields computed for the event of September, 23: (a) LR B-Spline, (b) RBF, (c)
Kriging. Colors represent the field values from low (blue) to high (red).

of F , where the component is first born. The value F (p) is referred to as the
birth time of C. When two components corresponding to local maxima p1, p2,
with F (p1) < F (p2), merge together, we say that the component corresponding
to p1 dies. In this case, the component associated with the smaller local maximum
is merged into that associated with the larger one. Each local maximum p of F
is associated with its persistence value persF (p), which is defined as the di↵erence
between the birth and the death level of the corresponding connected component.
Maxima associated with a higher persistence value identify relevant features and
structures of the underlying phenomena, while maxima having a low persistence
value are interpreted as local information or noise, see Figure 5 for a visual intuition.

To compute the local maxima and the associated persistence values, F is inter-
polated on the vertices of a triangle mesh M. The points of M are first sorted
in decreasing values, from maxF to minF ; then, the classical 0th-persistence algo-
rithm (Edelsbrunner et al., 2002; Edelsbrunner and Harer, 2010) is used. The cost
of sorting the n points of M is O(n log n); after sorting, by using a union-find data
structure the persistence algorithm requires linear storage and running time at most
proportional to O(m↵(m)), where m is the number of edges in the mesh and ↵(·)
is the inverse of the Ackermann function. An example for the extraction of local
maxima at three di↵erent persistence levels is given in Fig. 6.

5. Approximation behavior

The first set of results that we discuss is related to the comparison of the be-
haviour with respect to approximation performance and computational complexity.
Concerning the leave-one-out cross-validation strategy, we have checked the results
by computing the three approximation fields turning o↵, iteratively, each rainfall sta-
tion at pi, for each cumulated interval. The value of the approximation function F
obtained was then compared at pi with the rain value measured by the corresponding
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(a) (b)

(c) (d)

Figure 4: Ordinary kriging approximation of rainfalls computed with (a) rain gauges and (b)
integrated with radar measurements. (c) Rain gauges weights and (d) radar data set mapped in
(b). Colors represent the field values from low (blue) to high (red).

rain gauge at pi, acting as a ground truth. The statistics of the evaluation are shown
in Table 1; the approximation methods behave in a slightly di↵erent way depending
on the three scenario. In the synthetic and the day-2 case studies, the best perfor-
mances are achieved by RBFs and LR B-splines, while ordinary kriging has a larger
maximum error in the synthetic case and larger mean absolute error for day-2. In
the day-1 case study, ordinary kriging and LR B-Splines have a smaller maximum
error, but the RBFs have a smaller mean-squares error and standard deviation. In
Fig. 7, the plot of the MSE distribution for the three methods is shown, per each
time interval. The MSE has been computed taking into account all datasets for all
tests. The plot is related to the day-1 event.

The histogram of the error in the Fig. 8 shows clearly that the distribution of
ordinary kriging is normally distributed while RBF has positive skewness and LR
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Figure 5: Two scalar fields f , g and their local maxima. On the right, pictorial representation
for the persistence of each local maxima. Segments on the right of the dotted line stand for the
persistence of topological noise.

Figure 6: A function F : M ! R, color-coded from blue (low) to red (high) values, and the associ-
ated local maxima having persistence greater than ↵(maxF �minF ), with ↵ = 0.05, 0.15 (middle)
and 0.25.

B-spline has a negative skewness. The global behaviour of the three approximation
algorithms is also well shown in the map depicted in Fig. 9, the distance between
the approximated fields and synthetic ground truth are plotted: ordinary kriging
produces more spots that are characterized by an error higher than RBF and LR
B-spline.

The second set of results concerns the cross-validation with the rainfall data
measured by the municipality stations as ground-truth to validate the values that
approximate only the ARPAL data set. This validation aims at gathering indicators
on the behavior, in terms of accuracy, on di↵erent spatial distribution of the sample
points. This approach is meaningful as the two observation networks cover an over-
lapping region of the study area. The network from Genova municipality is located
within the boundary of the city and is denser than the ARPAL one, which covers
the whole study area, and some of the ARPAL stations are located in the Genova
municipality. Comparing the approximation results at these two scales, we have eval-
uated the sensitivity of the approximation to local distributions of the samples and
the capability to estimate the local features of rain fields interpolated over a sparser
data set. According to the results in Table 2, ordinary kriging and LR B-Splines
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Method Max Mean Median Std. dev. MSE

[mm] [mm] [mm] [mm] [mm

2
]

Syntethic

Ord. krig. 0.93 (14.1%) 0.15 0.10 0.22 0.04
RBFs 0.55 (8.3%) 0.14 0.10 0.18 0.03
LR B-Splines 0.48 (7.1%) 0.16 0.11 0.22 0.05
Day 1

Ord. krig. 32.44 (54.1%) 0.02 5.85E-05 2.38 5.64
RBFs 37.80 (63.0%) 0.97 0.34 2.12 5.44
LR B-Splines 27.2 (45.3%) -0.04 1.20E-5 2.73 7.05
Day 2

Ord. krig. 16.6 (88.3%) 1.95 1.18 2.88 8.61
RBFs 16.59 (88.3%) 1.28 0.80 1.97 3.88
LR B-Splines 16.6 (88.3%) 1.27 0.79 1.98 3.95

Table 1: Statistics for the error distribution of the cross validation.

Method Max Mean Median Std. dev. MSE

[mm] [mm] [mm] [mm] [mm

2
]

Ord. krig. 28.62 (47.7%) 0.59 3.26E-3 4.45 20.21
RBFs 36.77 (61.2%) 1.41 0.44 3.25 12.58
LR B-Splines 30.39 (50.6%) 0.59 3.71E-3 4.45 20.19

Table 2: Statistics for the error distribution of the accuracy evaluation at di↵erent scales for day 2.

have the smaller maximum error, but the RBFs have a smaller mean-squares error.

5.1. Local analysis of the field di↵erences

Now, we compare the rainfall approximations looking at the di↵erences of the
rain values assumed on the DTM and the local smoothness of the three fields. First,
we show the point-wise di↵erence of the rainfall fields (Fig. 10). As expected, the
di↵erence of the fields is zero at the rain stations and, for the radar data also in the
nodes of the regular grid. Since for the kriging approximation we adopted a local
support, it gives a slightly perturbed approximation of the field far from the rain
gauges and the radar nodes. Furthermore, the approximations with LR B-Splines
and RBFs have a smoother behaviour and a lower approximation error.

To measure the smoothness of the approximated rainfall fields, we compare the
corresponding normalized gradients (Fig. 11). More precisely, given the approxi-
mated rainfall fields F1, F2 and the gradients rF1 and rF2, their point-wise di↵er-
ence at the node (i, j) of a uniform grid contained in the bounding box of Liguria is
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Figure 7: Leave-one-out cross validation for day 2: y-axis reports the MSE [mm

2] for each time
step x-axis.

measured as Biasotti et al. (2007)

d(rF1,rF2)(i, j) := 1� |hrF1(i, j),rF2(i, j)i2| .

As expected, the behaviour of the gradients and their dot product reflects the punc-
tual di↵erence of the rainfall fields. Fig. 12 represents the di↵erence of the gradients
over the selected grid: it can be seen that kriging has noisy values far from the sam-
pling points, as a matter of the local behaviour of the algorithm; RBF and ordinary
kriging behave in a similar way near the samples while LR B-Spline show di↵erence
in the gradient with respect to both other methods.

5.2. Computational complexity

The computational complexity of the di↵erent algorithms has been tested over
a 64 bits workstation 8 cores at 1.6GHZ and RAM of 16 GB. The system runs an
Ubuntu 14.04LTS with 3.13.0 kernel. The computational time is measured on the
rainfall data from the first day and with only rain gauges (no radar). The run of
LR B-Splines takes 19.33 seconds to compute the approximation over the whole re-
gion (20K points) for the 48 time intervals. For the same task, the ordinary kriging
takes 1.746 seconds and RBFs approximation takes 6.23 seconds. One important
point to make here is that, for all the methods, the computational complexity and
the timing collected are well below the time interval analyzed (30min). This impor-
tant characteristic tells us that we could use any of them for real-time monitoring of
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Ord. krig. error RBFs error LR B-Splines error

Figure 8: Histograms of the di↵erences among the three approximated rainfall fields and a synthetic
ground truth.

Ord. krig. RBFs LR B-Splines

Figure 9: Error between the three approximated fields and the synthetic ground truth.

the rain events. The analysis carried on until now does not tell us much about the
scalability of the methods for a larger set of observation points, where the computa-
tional complexity could become an issue.

6. Persistent rainfall maxima

Tables 3-6 report the comparative results about the extraction of persistent max-
ima when considering the rainfall fields produced by the three approximation schema
using the ARPAL rainfall stations and when these stations are integrated with the
radar data. For these tests, we used the rain data of the first precipitation event and
radar data (see Sect. 3). Hence, for each approximation scheme, we considered the
48 approximated fields, one for each cumulative step. For each field F , the associ-
ated persistence maxima have been extracted according to four di↵erent values for
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Ord. krig. vs LR B-Splines Ord. krig. vs RBFs LR B-Splines vs RBFs

Ord. krig. vs LR B-Splines Ord. krig. vs RBFs LR B-Splines vs RBFs

Figure 10: Point-wise di↵erence of the rainfall fields evaluated on the rain stations (first row) and
integrated the radar data (second row). Colors represent the di↵erence from low (blue) to high
(yellow) values.

a persistence threshold ", namely " = ⌧(maxF �minF ) with ⌧ = 0.05, 0.15, 0.25,
0.35. In practice, a maximum is preserved only if its persistence is larger than ",
while the others are filtered away. Table 3 reports the total number of extracted
persistent maxima, averaged by the amount of considered cumulative steps on the
rainfall fields approximated from the rainfall stations only. Table 4 shows the max-
imum number of local maxima that have been extracted, method by method, from
the 48 fields. Despite some slight di↵erences in the results, the general trend is to
have a decreasing number of persistent maxima as the threshold ⌧ increases. This
situation is actually not surprising, since a higher persistence threshold implies that a
larger portion of local maxima are pruned out. Also, for low values of the persistence
threshold, we can relate the number of detected maxima to the smoothness of the
considered approximation: in this view, the RBF schema appears to have a higher
smoothing e↵ect, as indicated by the smaller number of maxima characterized by a
low persistence value.

Similarly, Tables 5 and 6 report the same data when the approximation schema
integrate also the radar data. The trend to have a decreasing number of persistent
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Ord. krig. RBFs LR B-Splines

Figure 11: Gradient field of the three methods; in these images, the fields are approximated only
with the rain stations.

Ord. krig. vs RBFs Ord. krig. vs LR B-Splines RBFs vs LR B-Splines

Figure 12: Local di↵erence of the gradients of the three fields; colors represent the value of the
distance d over the model grid from 0 (blue) to 1 (yellow).

maxima as the threshold ⌧ increases is confirmed and much more evident. Indeed,
the approximation of the fields with such a higher number of constraints introduces a
quite large number of local maxima that are not really relevant and that are discarded
when the persistence threshold increases. Our tests further confirm that the RBF
schemes generally have a higher smoothness, as indicated by the slightly smaller
number of maxima.

6.1. Comparing sets of persistent maxima

In order to refine the above comparative analysis, we use the tracking procedure
introduced in (Biasotti et al., 2015) to quantitatively assess a (dis)similarity measure
between two sets of local maxima, originated from the three approximation schema.
Data are considered the same cumulative step. Before presenting results, we briefly
summarize the main ideas of (Biasotti et al., 2015).
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Table 3: Statistics for the average number of extracted persistent maxima.
Method ⌧ = 0.05 ⌧ = 0.15 ⌧ = 0.25 ⌧ = 0.35

Ord. krig. 28.31 11.27 6.70 4.37
RBFs 18.54 10.31 6.12 4.08
LR B-Splines 20.54 12.50 7.41 4.67

Table 4: Statistics for the maximum number of extracted persistent maxima.
Method ⌧ = 0.05 ⌧ = 0.15 ⌧ = 0.25 ⌧ = 0.35

Ord. krig. 48 19 13 9
RBFs 26 17 11 9
LR B-Splines 28 18 13 10

For two sets F , G of local maxima of two rainfall fields F,G : M ! R, it is
possible to compare them by measuring the cost of moving the points associated
with one function to those of the other one, with the requirement that the longest
of the transportations should be as short as possible. Interpreting the local maxima
in F and G as points in R3 (i.e., geographical position and persistence value), the
collections of local maxima are compared through the bottleneck distance between F
and G, which is defined as dB(F ,G) = inf� supp d(p, �(p)), where p 2 F , � ranges
over all the bijections between F and G, d(·, ·) is the pseudo-distance

d(p,q) := min{kp� qk,max{persF (p), persG(q)}},

which measures the cost of moving p to q, and k · k is a weighted modification
of the Euclidean distance. In practice, the cost of taking p to q is measured as
the minimum between the cost of moving one point onto the other and the cost of
moving both points onto the plane xy : z = 0. Matching a point p with a point
of xy, which can be interpreted as the annihilation of p, is allowed by the fact that
the number of points for F and G is usually di↵erent. The matching � between the
points of F and those of G, for which dB is actually occurred, is referred to as a
bottleneck matching (Fig. 13). Through the bottleneck matching and the bottleneck
distance, it is then possible to derive quantitative information about the di↵erences
in the spatial arrangement and the rain measurements for the points in F and G.

The bottleneck distance can be evaluated by applying a pure graph-theoretic
approach or by taking into account geometric information that characterizes the
assignment problem. We opt for a graph-theoretic approach, which is independent
of any geometric constraint, and our implementation is based on the push-relabel
maximum flow algorithm (Cherkassky and Goldberg, 1997). For each iteration, the
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Table 5: Statistics for the average number of extracted persistent maxima with radar data.
Method ⌧ = 0.05 ⌧ = 0.15 ⌧ = 0.25 ⌧ = 0.35

Ord. krig. 99.22 26.46 10.91 5.15
RBFs 93.35 24.85 9.85 4.68
LR B-Splines 113.46 31.58 13.05 6.33

Table 6: Statistics for the maximum number of extracted persistent maxima with radar data.
Method ⌧ = 0.05 ⌧ = 0.15 ⌧ = 0.25 ⌧ = 0.35

Ord. krig. 175 62 27 13
RBFs 165 60 24 11
LR B-Splines 195 76 35 19

algorithm runs in O(k2.5), where k is the number of local maxima involved in the
comparison. We note that the computational complexity is not an issue, because
the number of points to be considered is very limited in general. For example, in
tracking applications the number of persistent maxima to be monitored is usually no
more than a dozen for each time sample.

Experimental results. For each cumulative step, we consider the rainfall fields inter-
polated by the three methods, and extract the sets of local maxima according to
the four persistence thresholds discussed above. For each threshold, the three col-
lections of persistent maxima are pairwise compared as follows. Since geographic
coordinates and rainfall measurements come with di↵erent reference frames and at
di↵erent scales, local maxima to be matched are first normalized so that their coordi-
nates range in [0,1]; then, they are processed by computing the associated bottleneck
matching and the bottleneck distance, and afterwards projected back in the original
reference frames. Finally, a measure of their distance in terms of both geographical
coordinates and rainfall values is derived by combining the information contained
in the bottleneck matching and the associated numerical (dis)similarity score. Pre-
cisely, we consider the geographical and rainfall distances, which are defined as the
largest di↵erence in geographical position and rainfall value, respectively, for two
persistent maxima that have been paired by the bottleneck matching.

Tables 7 and 8 report the obtained results, in terms of geographical and rain-
fall distances, respectively, averaged by the total number of considered cumulative
steps. To have a clearer picture of the comparative evaluation in terms of the two
distances, these results should be jointly interpreted for each persistence threshold.
For instance, when ⌧ = 0.05 we have (relatively) high values for the geographical dis-
tance together with quite low rainfall distance values: this can be interpreted as slight
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Figure 13: Two fields F,G : M ! R, color-coded from blue (low) to red (high) values, and the
associated local maxima. On the right, bottleneck matching between local maxima.

Table 7: Average geographical distance (Km) between sets of local maxima (Liguria area
size: 5.410Km

2).

Method1/Method2 ⌧ = 0.05 ⌧ = 0.15 ⌧ = 0.25 ⌧ = 0.35

Ord. krig / RBFs. 71.19 Km 13.76 Km 4.67 Km 2.46 Km
RBFs / LR B Spline 81.85 Km 54.47 Km 28.79 Km 14.46 Km
krig / LR B-Splines 104.59 Km 52.42 Km 29.66 Km 25.45 Km
Ord. krig + radar/ RBFs. + radar 186.01 Km 135.04 Km 7.27 Km 4.94 Km
RBFs + radar / LR B Spline + radar 223.89 Km 150.99 Km 23.20 Km 6.21 Km
krig + radar/ LR B-Splines + radar 121.49 Km 60.99 Km 30.10 Km 11.79 Km

numerical variations for the three approximations, possibly appearing spatially far
one from each other. From this perspective, approximations with RBFs and kriging
have an analogous behavior, both producing higher values for the geographical and
rainfall distances when compared with LR-B Splines. Moving to higher persistence
thresholds, the values of the geographical distance decrease, as an e↵ect of filtering
out non-relevant maxima, and the corresponding rainfall distance values reveal now
the di↵erences occurring at prominent maxima, which appear to be quite small.

We conclude by proposing in Table 9 a similar comparison of the results obtained
when rainfall fields are interpolated by considering either observed rainfall measure-
ments or an integration of these data with radar acquisitions (Sect. 5). Integrated
data can reveal useful information for rainfall tracking over time, as a matter of
the higher spatial and temporal resolution of radar data with respect to point-wise
rainfall fields measured by instruments at the ground level. Although rainfall mea-
surements are more reliable, integrating them with radar data makes it possible to
extend the rainfall field interpolation in larger areas and to have a clearer picture
about the temporal evolution of the associated precipitation event. According to the
results in Table 9, which are characterized by high values in both the geographic
and the rainfall distance, radar data can sensibly change the spatial location and
the rainfall value of persistent maxima. This result can be interpreted as the intro-
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Table 8: Average rainfall distance (mm) between sets of local maxima.

Method1/Method2 ⌧ = 0.05 ⌧ = 0.15 ⌧ = 0.25 ⌧ = 0.35

Ord. krig / RBFs. 3.83 mm 1.87 mm 1.15 mm 0.28 mm
RBFs / LR B Sp. 3.21 mm 3.13 mm 3.10 mm 2.13 mm
Krig. / LR B-Sp. 3.63 mm 3.32 mm 2.63 mm 1.74 mm
Ord. krig + radar / RBFs. + radar 10.22 mm 7.39 mm 4.22 mm 1.47 mm
RBFs + radar / LR B Sp. + radar 11.38 mm 10.22 mm 8.86 mm 5.79 mm
Krig. + radar / LR B-Sp. + radar 11.35 mm 9.80 mm 8.52 mm 5.18 mm

Table 9: Average geographical (Km) and rainfall distance (mm) between sets of local maxima.

Krig/ ⌧ = 0.05 ⌧ = 0.15 ⌧ = 0.25 ⌧ = 0.35

(Radar + Krig)

Geogr. dist. 146.08 Km 100.68 Km 104.25 Km 83.48 Km
Rainfall dist. 17.52 mm 17.23 mm 16.90 mm 16.04 mm
RBF/ ⌧ = 0.05 ⌧ = 0.15 ⌧ = 0.25 ⌧ = 0.35

(Radar + RBF)

Geogr. dist. 95.38 Km 96.13 Km 93.29 Km 88.88 Km
Rainfall dist. 17.71 mm 17.25 mm 16.56 mm 16.21 mm
LR B-spline/ ⌧ = 0.05 ⌧ = 0.15 ⌧ = 0.25 ⌧ = 0.35

((Radar +LR B-Spline)

Geogr. dist. 93.53 Km 94.72 Km 86.56 Km 77.09 Km
Rainfall dist. 18.77 mm 18.26 mm 17.953 mm 16.74 mm

duction of complementary information with respect to rainfall measurements, which
hopefully support a clearer understanding of precipitation events.

7. Conclusions and future work

The aim of this study was the comparison of di↵erent spatial approximation
methods finalized to compute the amount of rainfalls for hydro-metereological anal-
ysis and civil protection. For the approximation of rainfall data all the three ap-
proaches provide satisfactory results, with a preference for LR Splines and RBFs,
and easily support the integration of further sources of rain measures, for instance
those captured by radar.

As future work, we plan to proceed further with the presented comparison frame-
work, including several more aspects and extending the evaluation to more elaborate
correlation analysis, taking into account other relevant data, such as terrain mor-
phology, satellite imagery, and meteorological situation. We will further investigate
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this possibility and especially the e↵ect on approximation results on storm tracking.
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