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Abstract. 

In this paper we propose a novel methodology for tracking the maxima of rainfall precipitation fields, whose changes 

in time may give interesting insights on the evolution of storms. Our approach is based on a topological analysis of 

rainfall data allowing for the extraction of the most prominent, and hence meaningful, rainfall field maxima. Then, 

an ad-hoc bottleneck matching is used to track the evolution of maxima along multiple time instances. The potential 

of our method is exhibited through a set of experiments carried out on a collection of observed punctual rainfall 

data and radar measurements provided by Genova municipality and Regione Liguria. 
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Persistence-based tracking of rainfall field
maxima

Silvia Biasotti, Andrea Cerri, Simone Pittaluga, Davide Sobrero and Michela
Spagnuolo

Abstract In this paper we propose a novel methodology for tracking themaxima of
rainfall precipitation fields, whose changes in time may give interesting insights on
the evolution of storms. Our approach is based on a topological analysis of rainfall
data allowing for the extraction of the most prominent, and hence meaningful, rain-
fall field maxima. Then, an ad-hoc bottleneck matching is used to track the evolution
of maxima along multiple time instances. The potential of our method is exhibited
through a set of experiments carried out on a collection of observed punctual rain-
fall data and radar measurements provided by Genova municipality and Regione
Liguria.

1 Introduction

Recent catastrophic events caused by flooding rain in Genovaand in various areas of
the Liguria region (Italy, October 2014) have highlighted once again the importance
of computer systems in the analysis of environmental data. More and more digital
data are available, which provide an extremely rich, yet difficult to process, amount
of information about our environment and its dynamic phenomena. This is the case
of observed rainfall data, measured either by meteorological radar or rain gauges
distributed over the Liguria territory. The rain gauges measure at regular intervals
the amount of rain and provide therefore a close to real-timemeasures about the
ongoing precipitation. Together with wether forecasts, this information is used to
monitor critical precipitation events, as one of the many input for alarm forecasting
and civil protection plans.
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The observed rain data are also stored in time series, which contain valuable
knowledge that could concur to a deeper comprehension of storms and their evo-
lution in time. We believe that an effective and automatic method for an efficient
analysis of precipitation fields could suggest effective statistical analysis of events,
and correlation studies among the evolution of storms and several other relevant
data such as terrain morphology, satellite imagery and meteorological situation at
the large. While this is the long-term plan of our target application, in this paper
we present the results of the first step of the analysis pipeline, which relates to the
detection and tracking of precipitation maxima.

In order to understand the evolution in time of precipitation events, it is important
to focus on the main features of the associated rainfall fields and their configuration,
keeping only what is important and discarding irrelevant details that do not con-
tribute to understand the overall event structure. For thisreason, we think it is crucial
to adopt a description that captures the important elementsof the field, such as its
maxima, which have a relevant semantic content and, at the same time, are formally
well-defined. Indeed, the maxima of a scalar field are a subsetof its critical points
and their configuration. Moreover such a concept is related to differential topology
thus giving a suitable framework to formalize the problem. From the practical point
of view, computational topology techniques provide several tools and measures for
data analysis and coding, which can be used in several applications including visu-
alization [28, 31], understanding [13, 23, 32], simplification [21] and comparison
[27] of data. Extended surveys on these topic can be found in [2, 3].

In this paper we take advantage of tools offered by computational topology to
propose a novel methodology for tracking the maxima of rainfall precipitation fields,
whose changing in time may offer insights about the evolution of storms. The main
contribution of the proposed approach is twofold. First, weapply topological meth-
ods to the analysis of rainfall data, which allow for the extraction of the most promi-
nent, and hence meaningful, rainfall field maxima. Then, we introduce a new bot-
tleneck matching between sets of rainfall field maxima, which is used to track their
evolution along multiple time instances. The proposed method is validated by ex-
periments carried out on a collection of heterogeneous observed rainfall data (rain
gauges and radar measurements) as provided by Genova municipality and Regione
Liguria, and its implementation is integrated in the European Integrating Project IQ-
mulus: A High-volume Fusion and Analysis Platform for Geospatial Point Clouds,
Coverages and Volumetric Data Sets (http://www.iqmulus.eu/).

Related work Storm-tracking algorithms are a key ingredient of forecasting sys-
tems, as they can provide important information about assessing storm birth, evo-
lution and decay. A storm identifies a prominent precipitation event, and tracking
a storm consists in collecting, along time, all the locations spanned by that specific
precipitation event: the ideal tracking starts from the first moment in which the storm
has been detected till the last time it has been observed. A number of approaches
have been proposed to associate locations at a time frameti+1 with storms identified
at the timeti. Many of them first identify regions of interest on radar images, usu-
ally characterized by high reflectivity and sufficiently large area, and computes their
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characteristics such as centroids, area, major/minor radii and orientation. Then, re-
gions are matched across two consecutive time frames, according to the idea that the
best candidate for matching minimizes some distance between the considered char-
acteristic [26]. For example, the TITAN algorithm discussed in [12] combines both
centre of mass and area of regions for final decision of tracking. The SCIT algo-
rithm [24] forecasts the centroid locations of cells at timeti: regions at timeti+1 are
then assigned to the closest centroid location within a certain radius. The approach
proposed in [22] takes inspiration from the TITAN algorithm, but also includes the
overlapping of regions across consecutive time samples in the tracking process.

The methods based on a region-oriented tracking strategy work sufficiently well
when the morphological characteristics of the land are relatively simple: in our case,
the Liguria region instead is characterized by an articulated orography close to the
sea, with many small catchment basins that are highly influenced by local maxima
of precipitation and that can cause quite critical flash floods. Therefore, a tracking
which aims at detecting and following punctual maxima instead of regions appears
here to be more appropriate.

In this context, the approach we propose contributes to the current state-of-the-art
scenario of storm tracking algorithms by introducing the topological perspective for
the analysis of rainfall fields and their local maxima, in order to better understand
the structure and the evolution of precipitation events. Tothe best of our knowledge,
this is the first time that topological data analysis is used for this target application,
although the topological approach has been used in related scenarios involving geo-
spatial data, such as GPS trajectories simplification [25] and change detection [29].

Also, topological methods have been widely investigated for the visualization
and analysis of time-varying scalar fields [4, 9, 15, 19, 33].However, most of these
techniques mainly focus on localizing and tracking features of interest, sometimes
lacking a measure to quantitatively assess the amount of changing in the considered
features along time. On the other hand, our method pairs a tracking procedure with
a notion of distance that can be used to quantify how much a setof rainfall maxima
and its configuration has changed from time to time.

2 Persistent rainfall field maxima

Our goal is to study the evolution of precipitation events along time. To achieve this,
the idea is to capture the precipitation field originated by the storm under study at
several, sufficiently close time samples, and then to detectmeaningful changes in
the considered field instances as time moves on.

Our working assumption is that precipitation events at a given time sample are
sufficiently well represented by the maxima of the corresponding precipitation field.
This is actually part of the information analysed by expertsin order to better under-
stand and foresee the evolution in time and space of precipitation events. Hence, our
starting goal can be recast into the one of tracking the temporal evolution, in terms
of both geographical displacement and rainfall field value,of such maxima.
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Note, however, that in general not all maximum points of a precipitation field
are useful to characterize meaningful information. For example, local maxima char-
acterized by small rainfall field values usually correspondto non-relevant events;
therefore, it makes sense to track their evolution only in case the associated precip-
itation values become bigger than a threshold depending, e.g., on wind speed and
direction or territorial geography.

Also, relevant maxima should be characterized by some notion of prominence.
For instance, two maxima that are close in both geographicaldisplacement and field
values, such as in the case of a small bump occurring in the neighbourhood of a field
peak, will be probably talking about the same storm front, the bump being the result
of some approximation error or non-relevant fluctuation of the precipitation field.

Motivated by the above remarks, we propose a methodology based on the use
of topological persistence [16] for the detection of meaningful rainfall field max-
ima. Indeed, topological persistence provides a theoretically sound framework to
formally introduce the prominence (also called persistence) of rainfall field max-
ima, and hierarchically organize them according to this notion; in particular, low-
valued maxima cannot have large prominence according to persistence. In this way,
a persistent-based pruning can be easily induced on the setsof rainfall maxima to
simplify data and remove noise, also improving computational efficiency.

Topological persistenceTopological persistence is at the heart of topological data
analysis that deals with the study of global features of datato extract information
about the phenomena that data represent. The topological persistence approach is
based on computing topological features of data at different scales to see which
ones are long-lived and which are short-lived. The basic assumption is that relevant
features and structures are the ones that persist longer. These ideas are currently
receiving increasing attention from the research community, finding applications in
various fields ranging from shape description and comparison [5, 10, 11] to data
simplification [1] and clustering [6].

In the classical topological persistence setting, data areusually represented by
a topological spaceX , while its topological exploration is driven by a continuous
scalar fieldf : X →R. The role off is to describe some property which is considered
relevant for the analysis, in our case a rainfall field at a given time sample.

For the present contribution, we use topological persistence to study the evolution
of the connectivity for the superlevel setsXu = {x ∈ X | f (x)≥ u} for u ∈ (−∞,+∞).
To simplify the exposition, assume that the local maxima off are such that all their
values are different. As we sweepu from +∞ to −∞, new connected components
are either born, or previously existing ones are merged together. A connected com-
ponentC is associated with a local maximumx ∈ X of f , that is, the point ofX at
which the component is first born. The valuef (x) is referred to as the birth time
of C. When two components corresponding to local maximax1 andx2, such that
f (x1)< f (x2), merge together, we say that the component corresponding tox1 dies.
In other words, the component associated with the smaller local maximum is merged
into that associated with the larger one.
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In this way, it is possible to define a hierarchy of components, and hence of the
corresponding local maxima. In particular, each local maximumx ∈ X of f can be
associated with a quite natural notion of prominence: thef-persistence persf (x) of
x is simply the difference between the birth and the death timeof the correspond-
ing connected component. The global maximum off , which is associated with the
eldest component, is considered to havef -persistence equal to maxf −min f .

The added value in using persistence is that it is known to be more stable than
other measures of magnitude such as absolute height: to havean intuition of this, it
it is sufficient to think of a small bump occurring in the neighbourhood of a high-
valued peak off , which will be characterized by large absolute height but small
persistence. In general, persistence is robust to small perturbations of the considered
function: assuming for instance thatg is a noisy approximation off , there is a one-
to-one mapping of small variation from the prominent local maxima ofg to those
of f , the remaining ones being associated with topological noise, see Figure 3 for a
visual intuition.

X

f

g

R

Fig. 1 Two functionsf ,g : X → R and the associated local maxima. On the right, pictorial repre-
sentation for the persistence of each local maxima. Segments on theright of the dotted line stand
for the persistence of topological noise.

2.1 Implementation

In our implementation, the discrete counterpart of the space X is a triangle meshM
representing the whole Liguria Region. We consider severalfunctions fi : V →R≥0

defined on the set of verticesV of M and taking values in the setR≥0 of non-negative
real numbers: eachfi comes from rainfall data at a timeti, as specified in Section 4.1.
In practice, the valuefi(v) represents the cumulated rain atv in the temporal interval
(ti−1, ti]. For a functionfi, we process the vertices ofM in decreasing values, from
max fi to min fi. To compute the local maxima offi and their prominence, we use
the classical persistence algorithm for 0th homology [16, 14]. An example of the
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outcome is given in Figure 2, showing one of the functionsfi and its local maxima
at three different persistence levels.

Fig. 2 A function fi : V → R≥0, colour coded from blue (low) to red (high) values, and the as-
sociated local maxima having persistence greater thanτ(max fi −min fi), with τ = 0.05 (left),
0.15 (middle) and 0.25 (right).

Sorting then vertices ofM takesO(n logn). After that, by using a union-find data
structure, the persistence algorithm requires linear storage and running time at most
proportional tomα−1(m), with m the number of edges in the mesh, andα−1(·) is
the Ackermann function.

3 Tracking persistent rainfall field maxima

In this section we discuss how to match the sets of local maxima of two functions
f ,g : V → R≥0 representing a rainfall field at two different time instances, and how
to derive from the considered matching a measure of (dis)similarity for the two sets.
The idea is to compare the two sets by measuring the cost of moving the points
associated with one function to those of the other one, with the requirement that the
longest of the transportations should be as short as possible. Since, in general, the
number of points in the two sets may differ, we also enable points to be “annihi-
lated”, paying some cost in terms of the final dissimilarity distance. By assuming
that the number of local maxima is finite for bothf andg, which is actually the case
in our application scenario, our goal can be related to the bottleneck transportation
problem [17, 20], and in particular to the notion of bottleneck distance [8, 30].

Matching rainfall field maxima Let F , G be the sets of local maxima associated
with two rainfall fields f andg, respectively. In order to compare the two sets, we
interpret each of their elements as a point ofR

2×R>0, with R>0 the set of strictly
positive real numbers. In practice, each local maximum is associated with a triplet
of coordinates representing its geographical position andthe associated persistence,
either for f andg. Note that geographical and rainfall measurements have nothing
to do with each other, hence a normalization step is needed beforehand, see Sec-
tion 4.2 for details. After normalization, we thus havep = (x(p),y(p),persf (p)) for
each maximump ∈ F ; similarly, q = (x(q),y(q),persg(q)) for all q ∈ G. We further
assume to augment bothF andG by adding all points of the planexy : z = 0, still
denotingF and G the resulting subsets ofR2 ×R≥0. This last technical require-
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ment allows us to compare the collections of local maxima by making use of the
bottleneck distance betweenF andG, which is defined as:

dB(F,G) = inf
γ

sup
p

d(p,γ(p)), (1)

wherep ∈ F , γ ranges over all the bijections betweenF andG, andd is a measure
of the distance betweenp andγ(p). A bijection betweenF andG has three types
of point pairs: both off the planexy, one offxy and the other on that plane, and both
on xy. Roughly speaking, the most important type is the first, matching points in
terms of their geographical displacement and persistence,and the least important is
the last, completing the matching in a way that does not affect the final distance.
The remaining type of pairing is used to annihilate local maxima by moving them
to xy. In order to make the above reasoning more precise, we have tospecifyd. For
two pointsp,q ∈ R

2×R≥0, let ‖p− q‖ be a distance (e.g., the standard Euclidean
distance) betweenp andq. We now consider the following pseudo-distanced on
R

2×R≥0 to measure the cost of movingp to q:

d(p,q) := min{‖p−q‖,max{persf (p),persg(q)}}. (2)

In other words, the pseudo-distanced between two pointsp andq compares the cost
of movingp to q with that of annihilate them by moving bothp andq onto the plane
xy, and takes the most convenient. Therefore,d(p,q) can be considered a measure
of the minimum of the costs of movingp to q along two different paths (i.e. the path
that takesp directly toq and the path that passes through the planexy). This obser-
vation easily yields thatd is actually a pseudo-distance. We also remark that the inf
and the sup in the definition of the bottleneck distance are actually attained; this is
quite easy to see under the assumption that the local maxima of F andG are finite in
number. In other words, there always exists a matching between the elements ofF
andG. In what follows, such a matching will be referred to as abottleneck matching.

Tracking rainfall field maxima The notion of bottleneck matching that naturally
arises from the formulation of the bottleneck distance provides us with a tool to fol-
low the evolution of rainfall field maxima along time. Indeed, the bottleneck match-
ing can be used to pair the local maxima associated with two functions representing
a rainfall field at two consecutive time samples, see Figure 3for an example.

Fig. 3 Two functions f ,g : X → R, colour coded from blue (low) to red (high) values, and the
associated local maxima. On the right, bottleneck matching between local maxima.
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Consider now the functionsfi introduced in Section 2.1. By composing the bot-
tleneck matchings obtained for each pair of consecutive functions, we get a pro-
cedure to track the temporal evolution of the rainfall field under examination. In
our application scenario this translates, for example, into the following typical sit-
uations. Suppose that two functionsfi, fi+1 are such thatfi+1 is obtained through
minor variations of fi. In this case, there is a one-to-one mapping that pairs lo-
cal maxima with large persistence; the remaining points canbe either annihilated
or matched each other without affecting the final value of thebottleneck distance.
On the other hand it could happen that, passing fromfi to fi+1, new local max-
ima characterized by a large persistence value appear, representing the birth of new
events; similarly, existing maxima might disappear, revealing the death of meaning-
ful events. In both cases, some maxima for eitherfi or fi+1 have to be annihilated
because they have no counterpart among those of the other function, possibly pro-
ducing the final value of the bottleneck distance.

Interpreting tracking The analysis of the above situations can be complemented
by considering the resulting value of the bottleneck distance. Indeed, it provides
a quantitative insight about the changing in the configuration of local maxima. In
particular, a large value for the bottleneck distance can beused as a warning high-
lighting a brusque variation in the storm evolution. In the first situation, for example,
the bottleneck distance might reveal the significance of geographical displacements
for some maxima with large persistence; in the second situation, a high value for the
bottleneck distance might be associated with a split or merge event. The role of the
bottleneck distance would be particularly useful in the latter case, as the bottleneck
matching is not conceived, in the current formulation, for dealing with one-to-many
or many-to-one pairings, which is actually another possible way to represent split
and merge events.

3.1 Implementation

Computing the bottleneck distance can be formulated as a classical assignment
problem, which can be usually handled by either following a pure graph-theoretic
approach, or taking advantage of some geometric additionalinformation possibly
characterizing the assignment problem. The latter solution is generally more per-
forming, achieving peaks of computational efficiency in case the points to be com-
pared are inR2 and the metric underlying the bottleneck distance (i.e.,d in our
notation) is the Euclidean or theL∞ one [17]. However, this is not our case, as we
consider points inR3, andd is actually a pseudo-distance. Therefore, we opt for a
graph-theoretic approach, which is independent of any geometric constraint.

Our implementation is based on the push-relabel maximum flowalgorithm [7].
For two sets of local maximaF andG, our algorithm simulates the aforementioned
augmenting procedure, giving the value of the bottleneck distance and the pair of
points realizing it as output. Note that not both points are necessarily local max-
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ima: indeed, the bottleneck distance might come as the result of moving one local
maximum onto the planexy. To obtain the bottleneck matching, the selected local
maxima are removed from the initial sets, and a new iterationof the algorithm is
run: the process ends when one of the two sets is empty.

For each iteration, the algorithm runs inO(n2.5), beingn the number of local
maxima involved in the comparison. Note, however, that the computational com-
plexity is definitely not an issue in our application scenario, because the number of
storms fronts to be tracked is very limited, usually no more than a dozen.

4 Experimental results

The case study on which we have tested our framework is definedby a collection of
observed punctual rainfall and radar data covering the areaof interest of the study.
Measurements are organized in a number of time steps: for each time step, data are
pre-processed and interpolated over the whole domain. The resulting precipitation
field is sampled at the vertices of a triangle mesh, representing the Liguria region.
Our procedure to track the temporal evolution of precipitation events is summarized
as follows:

• for each time step, extract the most persistent local maximaof the corresponding
precipitation field, according to a persistence threshold specified by the user;

• for each pair of consecutive time steps, compute the bottleneck matching to pair
the persistent local maxima of the corresponding fields;

• chain all the computed bottleneck matchings to define the final tracking of per-
sistent local maxima.

Before discussing the results obtained, we provide detailson the dataset and the
above procedural steps.

4.1 The dataset

We have selected two different precipitation events. The first one occurred on
September 29, 2013, and was characterized by light rain overLiguria with 2 dif-
ferent thunderstorms that caused local flooding and landslides. The peculiarity of
this event is that the two thunderstorms were qualitativelydifferent, adding variabil-
ity to the benchmark: the first thunderstorm translated linearly from south-west to
north-east, while the second one was characterized by a firststationary phase be-
fore translating as well from west to east. Due to the morphology of the Ligurian
territory, thunderstorms belonging to the latter categoryare particularly dangerous:
one of them caused the catastrophic floods in various areas ofLiguria in October
2014. The second event occurred between the 16th and the 20thof January, 2014,
and is related to an Atlantic low pressure area. This kind of events often produces
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a secondary low pressure area, known as Genoa Low, over the Ligurian Sea. The
depression was responsible of heavy rain for about five days over all the region.

The dataset are gathered from different devices, namely rain gauges and weather
radar. The rain gauges networks are maintained by Regione Ligura and Genova mu-
nicipality, and are deployed with a different spatial distribution, see Figure 4. The

Fig. 4 Spatial distribution of the rain gauge networks of Regione Liguria (green triangles) and
Genova municipality (purple circles).

network developed by Regione Liguria is spread over the whole region, with 143
measure stations. The measure system deployed by Genova municipality is entirely
located within the city boundary, with 25 measure stations.The raw radar acqui-
sitions come at first as reflectivity measurements with a range of 400 km. The fre-
quency of mountains over the whole Ligurian territory affects the quality of radar ac-
quisitions and a pre-processing step is needed to remove ground clutter effects; pro-
cessed data are then combined with observations gathered from rain gauges, which
are more reliable measurements but do not cover the whole region.

Since the temporal interval is different for each acquisition device, rainfall mea-
surements have been cumulated. In this study, a 10 minutes cumulative step has
been used for the more dynamic event of September 29, 2013, for a total amount
of 144 time samples; for the event of January 2014, which is more stationary, mea-
surements have been cumulated every 30 minutes (240 time samples).

For each time stepti, the rainfall field fi is obtained by interpolating both rain-
fall and pre-processed radar measurements on a regular gridby means ofordinary
kriging, a point estimator algorithm in the best linear unbiased estimator family.
The estimate is a linear combination of the available measurements; it tries to be
unbiased by having the residual mean equal to zero to minimize the residual error.
The estimate at a pointv is expressed asfi(v) = ∑n

j=1 w j fi(v j), where fi(v) is the
estimated value at positionv, { fi(v j)}

n
j=1 are the known samples (i.e. the rainfall

measurements cumulated to the time stepti at the pointv j) and{w j}
n
j=1 are the
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corresponding weights. These weights are computed asC−1D, whereC, D are co-
variance matrices calculated (i) among all the input pointsand (ii) among the points
to be calculated and all the known data, respectively.

Each interpolated rainfall fieldfi is finally re-sampled on a digital terrain model
(DTM), represented as a triangle mesh. For our analysis, we consider the SRTM
(Shuttle Radar Topography Mission [18]) DTM available in public domain at the
URL http://www2.jpl.nasa.gov/srtm/.

4.2 The practical setting

For each fieldfi, we extract its most relevant local maxima. In doing this, points are
selected according to a thresholdε fixed a priori and chosen by the user. In practice,
a maximum is considered relevant only if its persistence is larger thanε. In this
way, it is possible to filter out local maxima associated withnon-relevant informa-
tion, namely minor variations of the considered rainfall field, as well as approxima-
tion errors. In our experiments, we have consideredε = ε(i) = τ · (max fi −min fi),
varyingτ to check the impact of the threshold on the quality of tracking results, see
Section 4.3 for details. In particular, forτ = 0.35, data has been manually annotated
by a geologist with experience in the analysis of precipitation events, finding a col-
lection of meaningful tracks (some of them are displayed in Figure 5). Following
[26], a track is considered meaningful only if it is given by the composition of at
least two bottleneck matchings. This collection of paths has then been used as a
ground truth to evaluate the results of our tracking procedure, which has been im-
plemented by taking into account the following remarks depending on the specific
real-world data under examination:

Fig. 5 Some of the validated tracks for the considered precipitationevents.
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• geographic coordinates and rainfall field measurements come with different ref-
erence frames and at different scales: the former are expressed in (millions of)
meters, while the latter in (tens of) millimetres for each time sample. Hence, for
two sets of local maxima to be matched, points are first normalized to range in the
interval [0,1], processed by computing the bottleneck matching and distance, and
then projected back in the original reference frames for thefinal visualization;

• The high presence of mountains over the whole Ligurian territory penalises large
geographical displacements of precipitation events in a short time. To put this
information in our model, we compare local maxima by emphasizing their ge-
ographic proximity. For two local maximap,q to be compared, we denote by
‖p− q‖ the weighted combination of their Euclidean distance restricted to the
geographic coordinates, say‖p−q‖geo, and the absolute difference of their per-
sistence, denoted by‖p−q‖pers. Hence we have

‖p−q‖= α‖p−q‖geo+β‖p−q‖pers. (3)

The pseudo-distanced in (2) is then evaluated by considering‖ · ‖ as in (3); the
computation of the bottleneck distancedB in (1) and the associated bottleneck
matching is updated accordingly. To emphasize the contribution of geographic
proximity, in our experiments we setα > β , varyingα andβ to test the impact
of weights on final results, see Section 4.3 for details;

• while pairing two local maximap and q through a bottleneck matching, the
pseudo-distanced(p,q) provides an additional hint about the nature of those
points. If d(p,q) = ‖p− q‖, by equation (2) it follows that it is more conve-
nient to directly matchp andq: our interpretation is that the two local maxima
are strongly related, that is, one point is the temporal evolution of the other. In
this case, the pairing(p,q) is used to compose the final tracking of local max-
ima. On the other hand, havingd(p,q) = max{pers(p),pers(q)} is equivalent
to annihilating bothp andq. This might occur because the two local maxima
represent either unrelated events or non-relevant information. In both cases, the
pairing (p,q) is not included in the final tracking. However, one of the causes
for the annihilation procedure, namely non-relevant information to be handled,
is in part achieved by filtering out maxima trough the persistence thresholdε.
Motivated by this, we relax the annihilation process induced by d by mitigating
the contribution of‖p−q‖ in (2), and assumeα +β < 1 rather than= 1.

4.3 Results

Results are shown in Tables 1 and 2. A first evaluation consists in analysing the per-
formance of our tracking method according to different parameters settings, namely
varying the persistence thresholdτ and the weightsα andβ used to balance the con-
tributions of geographic and rainfall information. In doing this, we have considered
the following evaluation measures adapted from [34]:
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• Detected Tracks (DT): A track in the ground truth is considered to have been
correctly detected if it is overlapped by a track retrieved by our system for at
least one third of its segments, that is, matchings. The finalTD score is given by
the ratio between the number of correctly detected tracks and the total number of
tracks in the ground truth;

• Tracks completely detected (TCD):A track in the ground truth is considered
to have been completely detected if it is overlapped by a retrieved track for all
its segments. Again, the final TCD score is the number of completely detected
tracks normalized by the total number of tracks in the groundtruth;

• Missed tracks (MT): These are the tracks in the ground truth whose overlapping
with a retrieved track involves less than one third of their segments. The total
number of missed tracks is finally normalized by the total number of tracks in
the ground truth.

The above evaluation is summarized in Table 1 for different values of the persistence
thresholdτ and the weightsα andβ . All results are in percentage values.

Table 1 Table of results for the DT, TCD and MT evaluation measures, according to different
choices of the parametersτ, α andβ . Best results are in bold text.

DT (%) α = 0.3 α = 0.4 α = 0.5
TCD (%) β = 0.3 β = 0.2 β = 0.1
MT (%)

τ = 0.25
59,46 62,16 54,05
27,03 27,03 24,32
40,54 37,84 45,95

τ = 0.35
51,35 70,27 62,16
21,61 27,03 24,32
48,65 29,73 37,84

Perhaps not surprisingly, the best results in terms of DT, TCD, and MT scores are
achieved for the highest persistence thresholdτ. Indeed, in this case a larger number
of non-relevant events are thrown away, ensuring a more reliable tracking procedure.
In particular, looking at the corresponding values for weightsα andβ , settingα =
0.4 andβ = 0.2 provides the best parameter configuration in terms of DT, TCD,
and MT scores. Hence, for this specific setting, we have refined the evaluation of
results by comparing the obtained tracks with those provided by manual annotation
as detailed in what follows.

For those tracks that have been completely detected (10 in total), we first look
for a counterpart among those retrieved by our system, and select the one sharing
the highest number of segments, that is, matchings. Then, the comparison between
the two tracks is performed according to the following evaluation measures, adapted
from [26] to cope with our case study:

• duration: this is the difference between the number of segments in the retrieved
and the target track, normalized by the number of segments ofthe longest one;
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• mean rain difference (δ -rain): this is the absolute difference between the mean
values of the cumulated rain along the retrieved and the target track, normalized
by the largest of the two values;

• distance: this is a measure of how much the retrieved track is far from being
exactly the target one. We simply sum the lengths (in the Euclidean norm) of all
segments belonging to the retrieved track that are not in thetarget one. This value
is then normalized by the length of the retrieved track.

All measures ranges in [0,1), with 0 the optimal value. A positive score means over-
estimation: in other words, in this case the target track is completely covered by a
longer retrieved one. Related results for the collection oftarget tracks are reported
in Table 2.

Table 2 Table of results for the three evaluation measures.
Durationδ -rain Distance

Track 1 0 0 0
Track 3 0.79 0.29 0.95
Track 4 0 0 0
Track 12 0 0 0
Track 14 0 0 0
Track 16 0.20 0.19 0.35
Track 22 0.25 0.02 0.35
Track 26 0.25 0.10 0.09
Track 29 0.86 0.13 0.89
Track 34 0.67 0.13 0.86

As a general comment, we can say that tracking the precipitation events associ-
ated with stationary thunderstorms has revealed to be definitely more difficult than
for the more dynamic ones: the reason can be found in the fact that stationary events
produce across time bunches of local maxima that are close toeach other, and that
can hardly be matched correctly by only relying on geometricinformation, which is
actually our case.

5 Conclusions

In this paper we have presented a novel methodology for the effective tracking of
rainfall field maxima along time. A persistence-based approach for the detection of
the most meaningful local maxima has been complemented withthe introduction
of an ad-hoc bottleneck matching to track the evolution of maxima across different
time instances. In spite of the encouraging results obtained on real-world data pro-
vided by Regione Liguria and the municipality of Genova, there is still a long road
ahead. In this respect, the most promising research directions include to feed our
system with additional multi-modal measurements complementing the purely geo-
metric ones. We refer in particular to refine the matching process by including in-
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formation about wind speed or territorial morphology, which may put constraints on
the practical displacement of local maxima. Also, cross-correlation analysis could
be considered, in order to somehow exploit the information about the already as-
signed matchings: indeed, in the current implementation the time history of a track
is not considered in order to compute the subsequent matchings. Finally, it would
be interesting to extend the notion of bottleneck matching to admit one-to many
and many-to one pairings, to improve the detection and tracking of merge and split
events.
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