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Abstract. 

 
In this paper we investigate numerically the order of convergence of an isogeometric collocation method that builds 

upon the least-squares collocation method presented in [1] and the variational collocation method presented in 

[14]. The focus here is on smoothest B-splines/NURBS approximations, i.e, having global Cp-1 continuity for 

polynomial degree p. In particular, we show that using as collocation points a suitable subset of those considered in 

[1] (which are related to the Galerkin superconvergence theory) it is possible to achieve optimal L2-convergence for 

odd degree B-splines/NURBS approximations with a pure collocation scheme, i.e., considering as many collocation 

points as degrees-of-freedom. The method in [1], instead, is based on a least squares formulation due to the fact 

that the set of collocation points outnumbers the degrees-of-freedom to be computed. We especially highlight that 

we obtain fourth-order convergence for the L2 and L∞ norm of the error when considering cubic basis functions. 

Further careful analysis is however needed, since the robustness of the method and its mathematical foundations 

are still unclear. 
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Optimal-order isogeometric collocation at Galerkin superconvergent

points

M. Montardini∗, G. Sangalli†, L. Tamellini‡

September 7, 2016

Abstract In this paper we investigate numerically the order of convergence of an isogeometric collocation

method that builds upon the least-squares collocation method presented in [1] and the variational collocation

method presented in [14]. The focus here is on smoothest B-splines/NURBS approximations, i.e, having global

Cp−1 continuity for polynomial degree p. In particular, we show that using as collocation points a suitable subset

of those considered in [1] (which are related to the Galerkin superconvergence theory) it is possible to achieve

optimal L2-convergence for odd degree B-splines/NURBS approximations with a pure collocation scheme, i.e.,

considering as many collocation points as degrees-of-freedom. The method in [1], instead, is based on a least-

squares formulation due to the fact that the set of collocation points outnumbers the degrees-of-freedom to be

computed. We especially highlight that we obtain fourth-order convergence for the L2 and L∞ norm of the

error when considering cubic basis functions. Further careful analysis is however needed, since the robustness

of the method and its mathematical foundations are still unclear.

Keywords isogeometric analysis, B-splines, NURBS, collocation method, superconvergent points.

1 Introduction

The splines-based collocation method for solving differential equations has about fifty years of history. The

first references are [7, 13], where cubic C2 splines are used to solve a second order two-point boundary value

problem. In particular, in order to achieve optimal convergence, [13] collocates a modified equation, where

the modification is obtained by constructing a suitable interpolant of the true solution. An extension of this

approach to multivariate (tensor-product) splines and partial differential equations is studied in [16], while

extensions to m-order differential equations are found in [24] and in particular in [11], where the optimality

of the method is achieved by collocating the original, unperturbed, equation at suitably selected collocation

points, that is, Gaussian quadrature points. The method only works for splines of continuity Cm−1 and degree
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m + k − 1, with k ≥ m. Splines-based collocation has been successfully applied also to integro-differential

equations on curves, and to the boundary element method for planar domains (see [2] and references therein).

The interest and development of splines-based collocation methods for partial differential equations has

been driven in the last decade by isogeometric analysis (see [5, 4, 3, 6, 17, 22, 12, 23, 9, 19, 15, 18, 14]

and references therein). The motivation is computational efficiency: isogeometric collocation is more efficient

than the isogeometric Galerkin method, at least for standard code implementations, see [25]. In particular, the

assembly of system matrices is much faster for collocation than for Galerkin (unless one adopts recent quadrature

algorithms as in [8]). On the other hand, contrary to the Galerkin method, isogeometric collocation based on

maximal regularity splines has always been reported suboptimal in literature, when the error is measured in L2

or L∞ norm. For example, the L2 norm of the error of the collocation method at Greville points, studied in

[5] for a second-order elliptic problem, converges under h-refinement as O(hp−1) or O(hp), when the degree p

is odd or even, respectively, while the optimal interpolation error is O(hp+1) regardless of the parity of p for a

smooth solution. We remark that the previous ideas of [13, 11] cannot be applied directly to the isogeometric

case since [13] would require a complex modification of the equation (this approach however deserves further

investigation) and [11] does not work for maximal smoothness splines, which represent the most interesting

choice in this framework.

Collocating the equation at Greville points (obtaining the method to which we refer here as Collocation at

Greville Points, C-GP), is a common choice since Greville points are classical interpolation points for arbitrary

degree and regularity splines, well studied in literature, see e.g. [10]. There is however an interesting alternative,

inspired by [11] and stated in [1], which seeks for collocation points such that the collocation solution coincides

with the Galerkin one, thus recovering optimal convergence. These points are named Cauchy-Galerkin points,

and are the zeros of the Galerkin residual (see [14] for details). Unfortunately, these points are unavailable

a-priori; therefore, [1] selects as a surrogate the points where, under suitable hypotheses, superconvergence of

the second derivatives of the Galerkin solution occurs, motivated by the fact that for a Poisson problem the

Galerkin residual is actually equivalent to the error on the approximation of the second derivatives (we will

return on this point later on). Thus, if the collocation method constrains the residual to be zero where the

Galerkin residual is estimated to be zero at least up to higher order terms, there is hope for the collocation

solution to be close to the Galerkin solution. However, since there are more Galerkin superconvergent points

than degrees-of-freedom, ndof , for maximal smoothness splines (the superconvergent points are about 2ndof ),

[1] proposes to compute a solution of the overdetermined linear system by a least-square approximation. This

approach, which is not collocation in a strict sense, gives optimal convergence for odd degrees and one-order

suboptimal for even degrees. We refer to it as Least-Squares approximation at Superconvergent Points (LS-SP).

The idea above is further developed in [14], where a standard collocation formulation is obtained by selecting

only ndof collocation points among those used in [1], and showing that a well-posed collocation scheme can be

obtained if, roughly speaking, one superconvergent point per element is used as collocation point; since this

implies using every other superconvergent point (as shall be clearer later), we refer to this method as Collocation

at Alternating Superconvergent Points (in short C-ASP). The L2 convergence of C-ASP is one-order suboptimal

for any degree p, i.e., the L2-error decays as O(hp) for any p, and can therefore be seen in some sense as

an “intermediate” method between C-GP and LS-SP. In other words, the C-ASP solution is not as close as
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expected to the Galerkin solution. The reason is that the superconvergence points can be computed only when

assumptions are made, e.g., on the local symmetry of the mesh (see [26]) or on the periodicity of the error

(see [1], [14]) and these assumptions does not hold true everywhere in our computational domain. Nonetheless,

the only practical possibility is to work with the superconvergent points derived under the above-mentioned

assumptions also when such assumptions do not hold true. In this sense, it is not correct to refer to these points

as “superconvergent points”, but we do so in this paper for the sake of exposition. The correct and complete

identification of superconvergent points for problems of interest remains an open challenge.

Our present work continues in the direction of [14]. We propose a new criterion for selecting a subset of

superconvergent points to obtain a standard collocation method, yet with better convergence properties than

the C-ASP. This can be achieved by roughly taking two superconvergent points in every other element. This

method, which we name Clustered Superconvergent Points (C-CSP), features the same convergence order as

the LS-SP approach, i.e., optimal convergence for odd degrees in L2 and L∞ norm. Thus, we finally achieve

optimally convergent isogeometric collocation with cubic C2 splines.

The results we have obtained are preliminary and, while something “magic” happens with the C-CSP

collocation point selection, we are still unable to provide a rigorous convergence proof for C-CSP (nor for LS-

SP or C-ASP). Furthermore, we have considered quite simple numerical benchmarks, therefore the numerical

evidence that we have gathered is not yet conclusive regarding the robustness of the method. C-CSP definitely

deserves further analysis.

The outline of this work is as follows. Section 2 is a quick overview on B-splines, NURBS, and isogeometric

analysis. In Section 3 we present a framework for isogeometric collocation and the collocation schemes C-GP,

LS-SP, C-ASP, and the new C-CSP. In Section 4 we show some numerical tests of C-CSP, focusing on the odd

degree case, discuss its robustness and compare it with the other collocation methods. Finally, some conclusions

and perspective on future works are detailed in Section 5.

2 Preliminaries

2.1 B-splines

Let us consider an interval Ω̂ ⊂ R. The B-splines basis functions defined on Ω̂ are piecewise polynomials that

are built from a knot vector, i.e. a vector with non-decreasing entries Ξ = [ξ1, ξ2..., ξn+p+1], where n and p are,

respectively, the number of basis function that will be built from the knot vector and their polynomial degree.

We name element a knot span (ξi, ξi+1) having non-zero length, and we denote by h the maximal length (the

meshsize). A knot vector is said to be open if its first and last knot have multiplicity p + 1, i.e., each of them

is repeated p+ 1 times.

Following [10] and given a knot vector Ξ, univariate B-splines basis functions Ni,p are defined recursively as
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follows for i = 1, . . . , n:

Ni,0(ξ) =

1 ξi ≤ ξ < ξi+1

0 otherwise

(2.1)

Ni,p(ξ) =


ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ), ξi ≤ ξ < ξi+p+1

0, otherwise

where we adopt the convention
0

0
= 0; note that the basis corresponding to an open knot vector will be

interpolatory in the first and last knot.

Remark 2.1. In this work we only consider knot vectors whose internal knots have multiplicity one: the

associated B-splines/NURBS have then global Cp−1 regularity.

We define by Ŝp = span{Ni,p|i = 1, ..., n} the space spanned by B-splines of degree p and regularity p − 1,

built from a given knot vector Ξ. We also introduce the space of periodic B-splines, spanning the space

S̃p = {v ∈ Ŝp|v(0) = v(1), v′(0) = v′(1), ..., v(p−1)(0) = v(p−1)(1)}; interestingly, the dimension of S̃p equals

the number of elements of the underlying knot vector Ξ, a property that will come in handy later on.

Multivariate splines spaces can constructed from univariate spaces by means of tensor products. For example,

a B-splines space in two dimensions can be defined by considering the knot vectors Ξ = [ξ1, ξ2..., ξn+p+1] and

Λ = [η1, η2, ..., ηm+q+1], and defining Ŝp,q = span{Ni,p(ξ)Mj,q(η), i = 1, ..., n, j = 1, ...,m}. In the following,

it will be useful to refer to the basis functions spanning Ŝp,q with a single running index k ranging from 1 to

n×m, i.e.

Ŝp,q = span{ϕp,qk (ξ, η) |k = i+ (j − 1)m, i = 1, . . . , n, j = 1, . . . ,m}. (2.2)

2.2 NURBS

Non-uniform rational B-splines (NURBS, cf. [21]) are defined for the purpose of describing geometries of

practical interest like conic sections, see e.g. Problem 3 in next section. The definition of a generic bivariate

NURBS function on the parametric square Ω̂ is

∀(ξ, η) ∈ Ω̂, Rp,qi,j (ξ, η) =
Ni,p(ξ)Mj,q(η)wi,j∑n

î=1

∑m
ĵ=1Nî,p(ξ)Mĵ,q(η)wî,ĵ

∀i = 1, ..., n, ∀j = 1, ...,m

where wi are suitable weights, and Ni,p(ξ),Mj,q(η) are the univariate B-splines basis functions defined in (2.1).

Similarly to (2.2) we also introduce a single running index k = 1, . . . , n×m to refer to the NURBS basis, i.e.,

Rp,qk (ξ, η) = Rp,qi,j (ξ, η), with k = i+ (j − 1)m, i = 1, . . . , n, j = 1, . . . ,m.

3 Isogeometric collocation and the choice of the collocation points

3.1 Isogeometric collocation

In our numerical tests we will consider both one-dimensional and two-dimensional elliptic problems, which we

now introduce.
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Problem 1 (One-dimensional Dirichlet boundary problem). Find u : [0, 1]→ R such thatu
′′(x) + a1(x)u′(x) + a0(x)u(x) = f(x) ∀x ∈ (0, 1)

u(0) = u(1) = 0

(3.1)

where a0, a1, f : [0, 1]→ R are sufficiently regular functions.

We assume that this problem has a unique smooth solution. We then look for an approximate solution

uh(x) =
∑n
i=1 ciNi,p(x) ∈ Ŝp, that complies with the boundary conditions u(0) = u(1) = 0 (i.e. c1 = cn = 0,

since B-splines built on open knot vectors, as in this case, are interpolatory at the first and last knot), and that

satisfies (3.1) in n− 2 collocation points {τ1, ..., τn−2} that need to be specified, i.e.

u′′h(τi) + a1u
′
h(τi) + a0uh(τi) = f(τi), ∀i = 1, ..., n− 2. (3.2)

The coefficients c2, . . . , cn−1 are then computed by solving the linear system obtained by inserting the expansion

uh(x) =
∑n
i=1 ciNi,p(x) into (3.2). We also shall introduce a periodic version of Problem 1, which we consider

because it is particularly simple to set up a collocation scheme for it, due to the already-mentioned fact that

the number of degrees-of-freedom n of S̃p (hence the number of collocation points to be used) is identical to the

number of elements of Ξ.

Problem 2 (One-dimensional periodic boundary problem). Find u : R→ R such thatu
′′(x) + a1u

′(x) + a0u(x) = f(x) ∀x ∈ R,

u(x) = u(1 + x) ∀x ∈ R,
(3.3)

where a0, a1 and f are sufficiently regular periodic functions.

We assume again that this problem has a unique (periodic) smooth solution. Note that the periodic problem

is not well-posed if a0 is null. The B-splines approximation of the solution of (3.3) is therefore uh ∈ S̃p such

that

u′′h(τi) + a1u
′
h(τi) + a0uh(τi) = f(τi) ∀i = 1, ..., n, (3.4)

for suitably chosen collocation points {τ1, ..., τn} with periodic distribution on [0, 1].

Finally, we also consider the two-dimensional Poisson equation, that we will solve by a multivariate collo-

cation scheme constructed by tensorizing univariate sets of collocation points. More specifically, we denote by

Ω ⊂ R2 a domain described by a NURBS parametrization F : Ω̂→ Ω, where Ω̂ = [0, 1]× [0, 1] and

F(ξ, η) =

n×m∑
k=1

PkR
p,q
k (ξ, η), Pk ∈ R2,

we let Γ denote the boundary of Ω, and we consider the Dirichlet problem

Problem 3 (Dirichlet boundary problem). Find u : Ω→ R such that−∆u = f in Ω,

u = 0 on Γ,

(3.5)

where f : Ω→ R is a sufficiently regular function.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1
p=3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1
p=4

Figure 1: Examples of Greville points computed from an open knot vector: p=3 and p=4. The interior Greville

points are used as collocation points in the C-GP scheme.

Galerkin C-GP LS-SP and C-CSP C-ASP

Odd p Even p Odd p Even p

L2 p+ 1 p− 1 p p+ 1 p p

H1 p p− 1 p p p p

H2 p− 1 p− 1 p− 1 p− 1 p− 1 p− 1

Table 1: Comparisons of orders of convergence: Galerkin, C-GP, LS-SP, C-CSP and C-ASP.

Again, we assume that this problem has a unique smooth solution. Following the isogeometric paradigm,

the discrete solution uh is sought in the isogeometric space

uh ∈ Sp,q = span
{
Rp,qk ◦ F

−1, ∀k = i+ (j − 1)m, i = 1, ..., n, j = 1, ...,m
}

cf. (2.2), and the collocation points are the image through F(·) of a tensor-product grid of collocation points

on [0, 1]. The collocation method is then obtained as for the univariate case.

3.2 Greville points and C-GP

Greville points, or abscissas, for p-degree B-splines associated to a knot vector Ξ = {ξ1, ..., ξn+p+1} are defined

as

τGPi =
ξi+1 + ...+ ξi+p

p
, ∀i = 1, ..., n,

see Figure 1 for an example computed from a open uniform knot vector and degree p = 3 and p = 4. For

an open knot vector the first and last Greville point coincide with the first and last knots ξ1 and ξn+p+1. A

common collocation scheme for second-order boundary value problems, as proposed in [5], uses as collocation

points the n− 2 internal Greville points. For brevity, this is denoted Collocation at Greville Points, C-GP.

In Table 1 we report the orders of convergence of C-GP and the other methods considered in this paper.

The convergence rate of C-GP in L2 norm is p − 1 when odd degree are used and p when even degree B-

Splines are used as discussed earlier (i.e. two-orders and one-order suboptimal, respectively). The error in H1

norm converges with the same orders of the L2 norm, and is therefore optimal for even degrees and one-order

suboptimal for odd degrees. The error measured in H2 norm is instead optimal for every degree.
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3.3 Superconvergent points for the second derivative of the Galerkin solution

Following [14], we now introduce the second derivative superconvergent points for the Galerkin solution of

Problem 1, which will be used to construct the collocation method.

Assume for a moment that a0 = a1 = 0, that is consider the simplified problem

−u
′′(x) = f(x) ∀x ∈ (0, 1)

u(0) = u(1) = 0,

(3.6)

and let u∗h be the approximated solution given by the Galerkin method based on B-splines. The points Ψh =

{ψh,1, ..., ψh,w} with w ∈ N, w > 0, are said to be Superconvergent Points (SP) for the j-th derivative of u if[ ∑
ψh,i∈Ψh

[
Dj(u− u∗h)(ψh,i)

]2] 1
2 ≤ Chp+1−j+k, ∀i = 1 . . . , w (3.7)

where k > 0, j ≥ 0, C is a constant, h is the meshsize of the knot vector, and p is the degree of the B-splines.

Here we are interested in the case k = 1 and j = 2. Indeed, D2(u−u∗h) is the Galerkin residual for (3.6), for

which we are (ideally) interested in assessing the zeros, which in turn we replace with superconvergence points

following the idea presented in the introduction. However, finding the location of the superconvergent points is

in general an open problem as well. Under the assumption that the superconvergent points are element invariant

(that is, images by affine mapping of points on a reference element) their locations have been estimated in [14]

and are reported in Table 2 for a reference element [−1, 1]. The same points are estimated in [1] under a similar

periodicity assumption. Both assumptions do not hold true in many cases of interest. The superconvergence

theory of [26] is instead based on a mesh symmetry assumption, which however does not hold true for elements

close to the boundary.

Following [1] and [14], since we do not have access to the “true” superconvergent points, we use the points

in Table 2, linearly mapped to the generic element, as “surrogate” superconvergent points in one-dimension.

For easiness of exposition, we refer to them throughout this paper as “superconvergent points”, although this

might not be technically true. How good is the approximation in practice? Figures 2 and 3 show D2(u − u∗h)

for equation (3.6) with f(x) = sin(πx), over a mesh with 10 and 20 elements and p = 3, . . . , 7, as well as

the “surrogate” superconvergent points for each degree of approximation: for odd degrees, a non-negligible

discrepancy is evident at the boundary of the interval, and for even degrees this occurs also at the middle of

the interval. Figure 4 is a zoom of the first element in Figure 3.

For completeness, Figure 5 shows the residual for the Periodic Problem 2 with a0 = a1 = 1, and f(x) =

(1 + 4π2) sin(πx) + 2π cos(2πx) over a mesh with 10 elements and p = 3, . . . , 7, as well as the “surrogate”

superconvergent points for each degree of approximation. In this case, the mismatch between the zeros of the

residual and the “surrogate” superconvergent points is higher in correspondence of a smaller residual. Note that

the residual is not periodic at the element scale.

For multi-dimensional problems on a NURBS single-patch geometry, the superconvergent points can be ob-

tained by further mapping the tensor product of one-dimensional superconvergent points through the geometry

map F in the physical domain. Clearly, the same considerations of the one-dimensional case are valid.
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−0.1
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0.1
p=3 
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−5

0

5
x 10−3 p=4 
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−2

0

2
x 10−4 p=5 
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−5

0

5
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Figure 2: Plot of D2(u − u∗h), equivalent to the residual of problem (3.6), and “surrogate” superconvergent

points (green dots), on a mesh with 10 elements.

Degree Second derivative SP

p=3 −1√
3
, 1√

3

p=4 -1,0,1

p=5 ±
√

225−30
√

30
15

p=6 -1,0,1

p=7 ±0.504918567512

Table 2: On the reference element [−1, 1], location of superconvergent points for the second derivative (from

[14]).
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.05
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0

1
x 10−8 p=7 

Figure 3: Plot of D2(u − u∗h), equivalent to the residual of problem (3.6), and “surrogate” superconvergent

points (green dots), on a mesh with 20 elements.

3.4 Least-Squares at Superconvergent Points (LS-SP)

As already mentioned, the Least-Squares at Superconvergent Points method (LS-SP) has been introduced by

[1]. In this method all the superconvergent points are used as collocation points. As it can be seen in Table

2, there are at least two superconvergent points per element; if we take all of them as collocation points, we

obtain an overdetermined system of equations if the numbers of element is large enough: such linear system is

then solved in least square sense, leading to a method which is not strictly a collocation method. The order of

convergence of the method as measured in numerical tests is reported in Table 1: note that it is optimal for

odd degrees and one-order sub-optimal in L2 for even degrees, while it is optimal regardless of the parity of p

in H1 and H2 norm.

Figure 6 shows the superconvergent points for p = 3, . . . , 7 on a knot vector with 10 elements. Observe that

the same least-square formulation can accommodate for both Dirichlet problems (i.e., open knot vectors) and

periodic problems.
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Figure 4: Zoom on the first element of Figure 3.

3.5 Collocation at Alternating Superconvergent Points (C-ASP)

C-ASP has been introduced in [14], as already discussed in the introduction, and can be seen as a collocation

method derived from LS-SP, where a subset of superconvergent points with cardinality equal to the number of

degrees-of-freedom to be determined is employed as set of collocation points.

To this end, the authors of [14] propose to select a subset of the superconvergent points in such a way that

every element of the knot span contains at least one collocation point; note that this roughly means considering

every other superconvergent point, hence the name we give to the method. Because we need to select as many

collocation points as degrees of freedom, the easiest case is when one considers the periodic Problem 2, for which

the number of elements is identical to the number of degrees-of-freedom, so that exactly one superconvergent

point per element is selected, see Figure 7 (this case is not considered in [14]). Note that for even p one possibility

is then to select the midpoint of each element, i.e., the Greville points for the uniform knot vector, see Figure

7b. For the Dirichlet Problem 1, one needs instead to select nel + p − 2 collocation points on a mesh of nel

elements. To this end, an ad-hoc algorithm is presented in [14] that selects suitable superconvergence points in

the internal part of the domain, and “blends them” with Greville points on the elements close to the boundary,

as can be seen in Figure 8. Note that other choices for the elements close to the boundary can be envisaged,
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Figure 5: Residuals of periodic problem with 10 elements.

which however do not affect the convergence order of the method, see [20].

The convergence orders of C-ASP assessed numerically by [1] are also reported in Table 1. Note in particular

that the L2 order of convergence for C-ASP is p regardless of the parity of p, i.e., one-order suboptimal, while

the H1 and H2 orders of convergence are optimal, again regardless of the parity of p.

3.6 Collocation on Clustered Superconvergent Points (C-CSP)

We now describe a new choice of collocation points among the superconvergent points, alternative to C-ASP,

which we name Collocation on Clustered Superconvergent Points (C-CSP).

To understand our approach, we describe it first in the simplest setting, i.e., the periodic Problem 2 with

even number of elements and odd degree p. We look for a periodic distribution of collocation points but keeping

the symmetry at the element level. This can be achieved selecting two superconvergent points in an element

and then skipping the following one, as depicted in Figure 9. Surprisingly, the order of convergence of C-CSP in

this case is optimal, cf. the numerical results in Section 4, Figure 14. For even degrees, we have experimented

different selections of sets of superconvergent points, preserving periodicity and some local symmetry, two of

which are depicted in Figure 10 (observe that with the first one we end up with Greville points again). In all

11



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1
p=3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1
p=4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1
p=5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1
p=6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1
p=7

Figure 6: Superconvergent points for p = 3, . . . , 7 on a knot vector with 10 elements.

(a) Case p odd.

(b) Case p even.

Figure 7: Example of C-ASP points for the periodic Problem 2. The collocation points are marked with full

red dots, while the remaining superconvergent points are displayed with green circles. In this case, C-ASP and

C-GP coincide for even degrees.

cases, we have measured numerically one-order suboptimal convergence in L2, i.e., we do not see improvements

with respect to C-GP, LS-SP or C-ASP, see the numerical results in Section 4, Figure 15. At this point, only

the odd-degree C-CSP seems to deserve further interest, and we will restrict to this case in the remaining of the

paper. How to use efficiently the superconvergent points in an even degree splines collocation scheme remains

an open problem.

The next step is to extend (odd-degree) C-CSP to the open knot vector to solve the Dirichlet Problem 1.

To this end, we need to include additional points, which are taken among the other superconvergent points

populating the elements close to the boundary, and trying to preserve symmetry, see Figures 11 and 12. Note

that when the number of elements is even the procedure just described will not yield a globally symmetric

distribution of collocation points, cf. Figure 12. We can however restore symmetry with a little modification

of the collocation approach: we add one (or a few) points to the collocation set to restore symmetry of the

collocation scheme, and average the equations corresponding to the points located at the center of the domain
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Figure 8: Example of C-ASP points for the Dirichlet problem 1 over a knot vector with 9 elements. The points

adjacent to the boundary are obtained according to Algorithm 1 of [14].

Figure 9: Periodic C-CSP stencil for odd degree: the collocation points are marked with full red dots, while the

remaining superconvergent points are displayed with green circles.

in order to match the number of unknown. This procedure is depicted in Figure 13 for p = 3.

The order of convergence of C-CSP on regular meshes, reported in Table 1, is the same of LS-SP, i.e.,

optimal for odd degrees. As already mentioned, all our attempts to extend it to even degree splines has

produced one order suboptimal convergence. These convergence rates have been measured by running the

numerical benchmarks detailed in Section 4 (also covering the symmetric variant of Figure 12).

4 Numerical tests

This section is devoted to the numerical benchmarking of the new C-CSP method, and its comparison to the

other approaches recalled in Section 3. For conciseness, we do not show convergence results in L∞ norm, which

we found to be identical to the ones in L2 norm in each of the tests reported below.

We begin by testing C-CSP on the periodic Problem 2, with a0 = a1 = 1 and with f(x) = (1+4π2) sin(2πx)+

2π cos(2πx), whose solution is u(x) = sin(2πx). As previously discussed, this is the only test for which we present

results for even degrees p: we see from the plots in Figures 14 and 15 that the orders of convergence for the L2

norm of the error are optimal, i.e. equal to p+ 1, for odd values of p, while for even p the measured convergence
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Figure 10: Attempts of C-CSP stencil for even degree: the collocation points are marked with full red dots,

while the remaining superconvergent points are displayed with green circles. The construction at the top leads

to Greville points, while the one at the bottom yields symmetry at a macro-element level.
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Figure 11: C-CSP points for a Dirichlet problem solved on a mesh with 9 elements (odd number of elements,

leading to a symmetric set of point): the collocation points are marked with full red dots, while the remaining

superconvergent points are displayed with green circles. Black dots represent the points added with respect to

the periodic stencil.

rate is only p, i.e. one-order suboptimal.

A natural question arises: why can’t we achieve optimal convergence when even degrees B-splines are

considered? The answer is not yet clear. As we explained in the previous sections, the rationale behind C-CSP,

as well as LS-SP and C-ASP, is to try to obtain the same solution delivered by the Galerkin method by imposing

the collocation residual to be zero at the superconvergent points, which are supposedly close to the true zeros of

the Galerkin residual. However, as we discussed in Section 3.3, we do not have access to the precise location of

the superconvergent points, and instead we use “surrogate” superconvergent points that do not approximate well

the zeros of the Galerkin residual everywhere in the domain. We do not see however any qualitative difference

between the odd and even case other than in the central element (although we did not perform a quantitative

analysis of this issue). Furthermore, it is not clear why the C-ASP selection results worse of the C-CSP one: in

other words, the points that would be selected by the C-ASP seem as good as those that would be selected by
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Figure 12: C-CSP points for a Dirichlet problem solved on a mesh with 10 elements (even number of elements,

leading to a non-symmetric set of point): the collocation points are marked with full red dots, while the

remaining superconvergent points are displayed with green circles. Black dots represent the points added with

respect to the periodic stencil.

the C-CSP as for what concerns being close to the zeros of the Galerkin residual.

We continue by testing the C-CSP method on the Dirichlet Problem 1 with a0 = a1 = 0 and f(x) =

π2 sin(πx), whose exact solution is u(x) = sin(πx), and show the corresponding results in Figure 16. As in

the previous case, the order of convergence is p + 1 in L2 norm and it is p in H1 norm. In order to compare

the four methods we presented (C-CSP, ASP, LS-SP and Greville collocation) against the Galerkin solver, we

show in Figure 17 a comparison of the convergence of the L2-error obtained when solving the Dirichlet problem

above with B-splines of degree p = 3. The plot highlights that C-CSP, although converging with optimal order,

shows an accuracy of one order of magnitude larger than Galerkin, while LS-SP converges essentially to the

same solution of the Galerkin method. It should be observed however that the computational cost of LS-SP

is significantly higher than C-CSP, not only because of the number of points where the residual needs to be

evaluated (about 2d times more that C-CSP in d dimensions) but also for the the higher condition number of

the resulting system of linear equations.

We also investigate the robustness of the method with respect to perturbations of the knot vector. To

this end, we start from an open knot vector with equispaced knots in the interior of [0, 1], we perturb it by

randomly chosen quantities, i.e. we replace each internal knot ξi by ξ̃i = ξi + 1
10nel

X, where X is a random

number X ∈ [−1, 1] (the resulting knot vectors are then said quasi-uniform; observe that the scaling factor

1
10nel

prevents knot clashes) and then we place the superconvergent points in each of the resulting elements.
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Figure 13: C-CSP symmetric-variant points for a Dirichlet problem with p = 3: the collocation points are

marked with red dots, while the superconvergent points whose equations have to be averaged are displayed with

green dots.
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Figure 14: L2 and H1 error plot: C-CSP periodic problem (odd p)
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Figure 15: L2 and H1 error plot for C-CSP periodic problem (even p), with the stencils depicted in Figure 10.

10−2 10−1
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

h

‖
u
−
u
h
‖
L
2

‖
u
‖
L
2

 

 

p=3

h4

p=5

h6

p=7

h8

10−2 10−1

10−14

10−12

10−10

10−8

10−6

10−4

10−2

h

‖
u
−
u
h
‖
H
1

‖
u
‖
H
1

 

 

p=3

h3

p=5

h5

p=7

h7

Figure 16: L2 and H1 error plot: C-CSP Dirichlet problem.
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Figure 17: Comparison of convergence of L2 error norms for the Dirichlet problem for different methods.
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(a) random-perturbation test, L2 error.
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(b) random-perturbation test, H1 error.
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(c) advection-reaction test, L2 error.
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(d) advection-reaction test, H1 error.

Figure 18: Robustness test for C-CSP with respect to perturbation of the knot vectors (plots 18a and 18b) and

changes of the differential operator (plots 18c and 18d).

The error plots are shown in Figure 18a and 18b. We note that we loose the optimal rates of convergence we

observed in the previous tests: the order of convergence is p for both the L2 and H1 error norm, i.e., optimal

for the H1 error norm and one-order suboptimal for the L2 one.

We also verify the influence of the differential operator, by considering non-null a0 and a1 in the Dirichlet

Problem 1. We performed several tests and the results obtained were identical; therefore, we report here only

one representative example. In detail, we consider a1(x) = x, a0 = 1 and f(x) = x(ex sin(πx) + πex cos(πx))−

2πex cos(πx) +π2ex sin(πx), whose exact solution is u(x) = sin(πx)ex. The results of the test we performed are

shown in Figure 18c and 18d: the order of convergence is still optimal: p + 1 for the L2 error norm, and p for

the H1 norm. We can then conclude that the C-CSP method seems to be robust with respect the form of the

elliptic operator.

Finally, we present two examples of two-dimensional Dirichlet Problem 3 solved by C-CSP. In the first one

we consider as computational domain Ω the quarter of annulus in Figure 19a (for which NURBS functions have

to be employed), and f(x, y) is chosen such that the exact solution is u(x, y) = −(x2 + y2 − 1)(x2 + y2 − 4)xy2.

In Figures 19b, 19c and 19d we show the convergence plots of the L2 and H1 errors for the C-CSP and Galerkin

methods for odd degree NURBS p = 3, 5, 7. The observed orders of convergence are as expected: optimal order
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(b) Case p = 3.
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(c) Case p = 5.
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(d) Case p = 7.

Figure 19: Ring domain and L2 and H1 convergence of approximations with p = 3, 5, 7.

in L2 norm and H1 norm. We remark that for p = 3 the H1 norms of the corresponding errors obtained by the

Galerkin and C-CSP methods are very close, as can be seen in Figure 19b.

In the second two-dimensional example, we let Ω be the rhombus with vertices (0, 0), (1
4 , 1), (1, 1

4 ) and ( 5
4 ,

5
4 ),

represented in Figure 20a (its parametrization is bilinear but not orthogonal, as in the previous example), and

f is such that the exact solution is u(x, y) = sin
(

4
15π(y − 4x)

)
sin
(

16
15π

(
x
4 − y

))
(x3 + y3). The corresponding

errors are shown in Figures 20b, 20c and 20d, and the same observations as before hold. Note however that the

gap between the C-CSP and the Galerkin solution is larger than in the previous example, especially for the L2

error. Moreover, for p = 5 and p = 7 the convergence is still in its preasymptotic regime.

5 Conclusions

In this paper we have proposed an isogeometric collocation method based on the superconvergent Galerkin

points. Our method uses as collocation points a subset of the superconvergent points, similarly to what proposed

in [14]. Our guiding criterion is however different, and consists in picking up clusters of points, in such a way to
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(b) Case p = 3.
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(c) Case p = 5.
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(d) Case p = 7.

Figure 20: Rhombus domain and L2 and H1 convergence of approximations with p = 3, 5, 7.

preserve symmetry at the element level. This choice allows to recover optimal convergence rates for odd-degrees

splines/NURBS, without “oversampling” the domain as in least-square approach proposed by [1]. Moreover, the

order of convergence of the L∞ norm of the error is the same of L2-norm in all experiments we have performed

(not shown in the paper for the sake of brevity).

The preliminary numerical campaign on one- and two-dimensional tests that we performed suggests that the

method is robust with respect to isogeometric mapping of the domain, while perturbations of the knot vector

may reduce the accuracy of the method. A rigorous mathematical explanation for the convergence behavior

observed for the proposed method, and for the other collocation methods based on the Galerkin superconvergent

points, is not available yet and will be the target of our future efforts.
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[11] Carl De Boor and Blâir Swartz. Collocation at gaussian points. SIAM Journal on Numerical Analysis,

10(4):582–606, 1973.

[12] L De Lorenzis, JA Evans, TJR Hughes, and A Reali. Isogeometric collocation: Neumann boundary

conditions and contact. Computer Methods in Applied Mechanics and Engineering, 284:21–54, 2015.

[13] DJ Fyfe. The use of cubic splines in the solution of two-point boundary value problems. The computer

journal, 12(2):188–192, 1969.

21



[14] Hector Gomez and Laura De Lorenzis. The variational collocation method. Computer Methods in Applied

Mechanics and Engineering, 309:152–181, 2016.

[15] Hector Gomez, Alessandro Reali, and Giancarlo Sangalli. Accurate, efficient, and (iso) geometrically flexible

collocation methods for phase-field models. Journal of Computational Physics, 262:153–171, 2014.

[16] Elias N Houstis, EA Vavalis, and John R Rice. Convergence of O(h4) cubic spline collocation methods for

elliptic partial differential equations. SIAM Journal on Numerical Analysis, 25(1):54–74, 1988.

[17] J Kiendl, F Auricchio, L Beirao da Veiga, C Lovadina, and A Reali. Isogeometric collocation methods for the

reissner–mindlin plate problem. Computer Methods in Applied Mechanics and Engineering, 284:489–507,

2015.

[18] Carla Manni, Alessandro Reali, and Hendrik Speleers. Isogeometric collocation methods with generalized

b-splines. Computers & Mathematics with Applications, 70(7):1659–1675, 2015.

[19] ME Matzen, T Cichosz, and M Bischoff. A point to segment contact formulation for isogeometric, nurbs

based finite elements. Computer Methods in Applied Mechanics and Engineering, 255:27–39, 2013.

[20] M. Montardini. A new isogeometric collocation method based on galerkin superconvergent points. Master’s

Thesis, Università di Pavia, 2016.
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