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Abstract. 
The feature-based modeling approach for designing a mechanical component has been widely adopted by most CAD 

modelers to maintain the design intent on models. A set of higher level information is requested to enrich the usual 

geometrical and topological data, in terms of feature information. A well known example of semantically significant 

data of this type is represented by the knowledge of the existence of symmetrical arrangements of repeated sub-

parts in CAD models. Because of the information transferring, repeated modifications of the models and different 

tolerances used by the various CAD systems, these specific data can be lost. In this report, after having provided 

the necessary mathematical background and the state of art of the existing symmetry detection methods, we 

propose an approach for retrieving symmetries involving a set of user-selected sub-parts in a given BRep part model. 

The approach is based on a preliminary analysis of the position of points (centroids), each of them representing one 

repeated feature; a further examination on the faces of the sub-parts is performed to confirm the existence of 

symmetric arrangements. We have provided the description for the detection of linear translational, reflectional, 

and circular translational patterns of repeated sub-parts. 
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Introduction

Regular geometric structures are ubiquitous in both natural and man-made objects, as

a universal concept. In the physical world, geometric symmetries and structural regu-

larity occur at all scales, from crystal lattices and carbon nano-structures to the human

body, architectural artifacts, and the formation of galaxies. This abundance of symme-

try in the natural world has inspired mankind to incorporate symmetry in fields such

as architecture, art, and engineering. To cite a prominent example, repeated structures

and motifs are fundamental in almost all design styles used in architecture, as visual

regularities is a commonly recognized aesthetic factor since ancient times [23], [24].

In engineering, symmetry in the design of manufactured parts has been gaining

increasing interest as a result of economical, manufacturing, functional, or aesthetic

considerations [24].

In mathematics, the term “symmetry” constitutes a function that, once applied to

a shape, leaves it unchanged. In the context of computer graphics and engineering,

the meaning is extended to a wider concept, including not only the classical geometric

property referred to a single shape, but also a “regularity” intended as arrangements of

repeated sub-parts of the model subjected to geometric transformations as reflections,

translations, rotations or combinations thereof [23].

The most popular models employed by CAD (Computer-Aided Design) systems

adopted by designers in industrial field are boundary representation (BRep) models.
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Figure 1: A feature based CAD model (source [27]).

BRep models describe objects in terms of their boundary, which is segmented in terms

of a finite number of subset, called faces, which in turn are represented by their bound-

ing edges and vertices [4]. These models are difficult to be directly handled by design-

ers. To overcome such a limitation, CAD systems have been empowered by more ad-

vanced modeling capabilities including parametric and feature-based approaches [11],

[25], [27].

The feature-based modeling approach for designing a mechanical component has

been widely adopted by most CAD modelers to maintain the design intent on BRep

models. With the term “design intent” we intend the set of detailed requirements, cri-

teria, constraints established by the creator of the shape model, to fulfil his intended

initial project requirements and to grant the expected functionalities once the object is

manufactured. As a consequence, the design intent establishes constraints and guides

on how the model behaves when dimensions are edited [2], [28].

A feature based CAD model is created through the chronological Boolean combi-

nation of finite features (pad, shaft, shell, hole, chamfer, and so on, see Figure 1) to

generate the final solid. Furthermore, intentional patterns of congruent features can be
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adopted by the CAD designer, such as circular patterns, rectangular patterns, reflec-

tional patterns, or even user-defined patterns. In this way, a feature-based CAD model

contains not only the BRep representation, but can be enriched by a set of higher level

information, in terms of feature information, including feature types, parameters, refer-

ences, and building histories. which can further exploited either in the object production

or for the creation of new parts as a variation of the existing ones. In fact, it has been es-

timated that around 80% of all design tasks concerns the adaptation of existing designs

to new requirements [27].

Therefore, when a designer generates a solid, its model structure may not con-

tain the pattern operations or other symmetry constraints, due to the changes in the

functional objectives and the consequent modifications that prevent the designer from

generating a well structured representation of the final object. Furthermore, automatic

translations between different file formats in CAD data transfer commonly lead to the

loss of this information. Another recurring problem derives from the different toler-

ances used in CAD systems: what is symmetric in one CAD system might be not sym-

metric in another [21]. Similarly, geometric data acquired by scanning existing physical

parts lack high-level information on symmetry by nature, as the acquired data is in form

of point cloud structures that may also be incomplete or corrupted by noise [19].

Recovering explicit information on existing regular arrangements of repeated enti-

ties in a part can be very useful for the product development activities, from the design

to the downstream processing stages. In the following, some examples showing the

benefits which may derive from the availability of high-level symmetry information are

provided.

• By reorganizing the structure of the building history of a model, intended as an

integration of the regular arrangement information to the feature tree structure,

future modifications can take advantage of a more explicit and ordered structure.

For instance, changes on the characteristics of the identified patterns can automat-
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ically change the position of the related elements, e.g. modifying the radius of

a circular pattern. Moreover, once added this set of information, the representa-

tion of a solid can be further compressed by exploiting the symmetry information

in a optimal way. For example, an object characterized by a global reflectional

symmetry in a certain plane can be stored by keeping only data related to half an

object and then annotating that the entire object can be obtained by replicating

with a reflection in the specified plane. Similarly, for repeated elements arranged

according to a predefined pattern, only a representative shape element can be

stored together with the arrangement rule.

The resulting model deriving from the restructuring operation is called com-

pressed model, and it must replicate the input model while preserving the ac-

curacy of the manufacturing process (in terms of tolerances) [16].

• During the product development process, symmetry properties of mechanical

components can be used to compute tool path trajectories of a machining process

and to structure these trajectories in order to optimize the tool displacements. In

the practice this helps locating the machining and assembly arms when the prod-

uct needs to be machined and assembled [15], [16].

• Reverse engineering (or back engineering) is the process of extracting knowledge

or design information from anything man-made and reproducing it. In some

cases, for BReps arising from this process it could be very helpful to recover

the design intent [17].

In general, design intent concerning the shape of a CAD model can be expressed

via intentional geometric properties of, and relations between, its vertices, edges,

faces and sub-parts.

In our context, we refer to recover design intent embodied as intentional high-

level geometric relations between a CAD model congruent sub-parts or as sym-
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metries of the single sub-parts.

• Having at disposal a set of high-level information may provide a substantial sup-

port in the retrieval of CAD models [23]. By considering queries that include

symmetry constraints, the searching can more effective and selective than choos-

ing more general and less significant searching parameters, such as the number

and types of faces.

• Another process benefiting from the presence of information about existing regu-

larities in a CAD model is the finite-element analysis (FEA). During this process

symmetries can be used to facilitate the simplification of the model, to adapt it

for the computational validation stage.

As a consequence of the wide variety of possible employments of the informa-

tion on regularity, the symmetry concept has received significant attention in computer

graphics and computer vision research in recent years. With the advances of computer

technology, automatic methods for symmetry analysis have been developed and differ-

ent approaches proposed. The main currently existing symmetry detection methods can

be classified in two categories: global symmetry detection methods and partial sym-

metry detection methods. The first category of approaches focuses on the detection of

a regularity involving the whole input shape, aiming to characterize the object as in-

tentionally globally symmetrically designed. The detected regularities unnecessarily

refer to the whole input model, indeed the second category of approaches aims to detect

regularities also limited to a sub-part or a set of sub-parts of the entire model.

This work, as a report of [9], aims to provide a method for detecting symmetries in-

volving a set of user-selected sub-parts in a given BRep model. Therefore, the proposed

approach belongs to the partial symmetry detection method class, moreover it focuses

on the detection of symmetric arrangements of congruent sub-parts, which constitute

intentional patterns of repeated components in the model.
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The goal is achieved by providing a preliminary analysis of the centroid location

of the selected sub-parts, to select an initial set of repeated sub-parts, as candidates for

a possible regular pattern. This analysis detects all the existing regular arrangements

of the centroids. In the second stage, each candidate sub-part set is geometrically ver-

ified, by analyzing the correct position of the faces, with respect to the pattern of the

corresponding centroids.

The proposed method is able to detect the following pattern types of congruent

selected sub-parts:

- linear translational pattern (Fig. a): the congruent sub-parts are characterized

by a repetition along a fixed direction, placed at a constant distance from each

other;

- reflectional pattern (Fig. b): referring to two of the selected sub-parts, they are

interrelated by a reflectional relation in a fixed plane;

- circular translational pattern (Fig. c): the congruent sub-parts are related by

translation, while they are positioned at a constant distance on a given circumfer-

ence in the 3D space.

The remainder of this research work is organized as follows.
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Chapter 1 provides the mathematical background concepts exploited in this work.

In particular, it focuses on the process for modeling and representing solids objects, by

listing a set of essential requirements a good model should fulfil to accurately repre-

sent the solid, to satisfy the validity conditions and to be computationally usable. The

boundary representation scheme, as basic modeling scheme in CAD system, is char-

acterized and analyzed. Mathematical theory related to isometries and symmetries in

Euclidean space, with particular attention to E2 and E3, is reported. A set of formal

definitions inherent to the application context is provided, explaining the meaning of

“symmetry” in CAD uses.

Chapter 2 is dedicated to the state of art of the existing symmetry detection meth-

ods. We present a possible classification of the approaches developed in recent years

as for symmetry detection, and we describe in details some existing algorithms relevant

for this work.

Chapter 3 presents the proposed approach for the pattern detection of congruent

sub-parts in a given BRep model. The set of entities specifically defined for the purpose

is characterized and formally defined. The followed method to the guide the pattern

search is step by step analyzed. The proposed algorithms are reported and commented.

A relevant number of tests has been performed to verify the effectiveness of the

proposed pattern detection algorithm. A report of the most significant experiments is

presented in Chapter 4; moreover, this chapter describes the development environment.





Chapter 1

Representation and symmetries in

solid model

In this chapter the main notions related to isometries and symmetries in the Euclidean

space are reported. Finally, a set of definitions related to the application context and

relevant for this work aims are presented.

1.1 Isometries

In this section we will introduce the concept of isometry. This set of functions, when

applied in 3D case, covers a fundamental role in the solid object modeling and analysis,

as these functions preserve the shape of the objects once applied to the corresponding

geometric models, and for this reason are relevant for our purposes.

More details about the notions introduced in this section can be found in [6]. In the

following, with the term “map” we will refer to a function.

Definition 1.1.1. Let (X, d) be a metric space. A map T : X → X is an isometry if it
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is invertible and preserves distances, so

d(T (x), T (y)) = d(x, y) for all x, y ∈ X.

Observation 1.1.2. The set of isometries of X forms a group Isom(X) under compo-

sition.

In the following, we consider as metric space the Euclidean one, whose metric is

defined in terms of the scalar product of the vectors.

Definition 1.1.3. Let a ∈ Rn. The map defined by

Ta : Rn → Rn x 7→ x+ a (1.1)

is called the translation by a.

Observation 1.1.4. Observe that

‖Ta(x)− Ta(y)‖ = ‖x− y‖.

So the map Ta is an isometry.

Definition 1.1.5. Let λ ∈ R and u a unit vector. The set π = {x : x · u = λ} a

hyperplane of Rn. The map defined by

Rπ : Rn → Rn x 7→ x− 2(x · u− λ)u (1.2)

is called the reflection in the hyperplane π.

Observation 1.1.6. Observe that

‖Rπ(x)−Rπ(y)‖ = ‖(x− y)− 2((x− y) · u)u‖ = ‖x− y‖.

So the map Rπ is an isometry.
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Observation 1.1.7. Any vector x ∈ Rn can be written as (x · u)u+ x⊥, with x⊥ such

that x⊥ ·u = 0, i.e. x⊥ is perpendicular to u. Then, reflection in π leaves x⊥ unaltered

but maps (x · u)u to (2λ− x · u)u.

Definition 1.1.8. A linear map f : Rn → Rn is orthogonal when it preserves the inner

product, i.e.

f(x) · f(y) = x · y for all x, y ∈ Rn. (1.3)

Let B be the matrix associated to the orthogonal linear map f , so such that f(x) =

Bx for all x ∈ Rn.

Since the inner product is given by x·y = xty, we have that xtBtBy = xty. Hence,

we have that

BtB = I.

Definition 1.1.9. Let Mn(R) be the set of n× n real matrices, the set of matrices

O(n) = {M ∈Mn(R) : M tM = I}

is said to be the orthogonal group.

To simplify, in the following, we will indicate asM the linear map associated to the

matrix M , for every M ∈Mn(R).

Lemma 1.1.10. Every orthogonal linear map B : Rn → Rn is an isometry for the

Euclidean metric. Conversely, if B : Rn → Rn is a Euclidean isometry that fixes the

origin, B is an orthogonal linear map.

Proof. Let B be an orthogonal linear map. Then for any x, y ∈ Rn

d(Bx,By)2 = ‖Bx−By‖2 = B(x− y) ·B(x− y) = (x− y) · (x− y) = d(x, y)2,

so B is an isometry.
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Now suppose that B is an isometry of En that fixes the origin. The polarization

identity:

2x · y = ‖x‖2 + ‖y‖2 − ‖x− y‖2

= d(x, 0)2 + d(y, 0)2 − d(x, y)2

shows that for any x, y ∈ Rn

Bx ·By = x · y.

So B preserves the inner product.

Let {e1, . . . , en} be the standard orthonormal basis for Rn. Because B preserves

the inner product, (Bei) is an orthonormal basis too. For any vector x we have

x =

n∑
i=1

(x · ei)ei

and also

Bx =

n∑
i=1

(Bx ·Bei)Bei (1.4)

=

n∑
i=1

(x · ei)Bei (1.5)

as B preserves the inner product. Hence

B :
n∑
i=1

xiei 7→
n∑
i=1

xiBei,

so B is a linear map.

Then B is an orthogonal linear map.

Proposition 1.1.11. If A : Rn → Rn is an isometry of the Euclidean space En, then

there is a vector v ∈ Rn and an orthogonal matrix B with

A(x) = Bx+ v for x ∈ Rn.

Conversely, a map A defined by A(x) = Bx + v, with v ∈ Rn and B ∈ O(n), is an

isometry.
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Proof. Let A be an isometry of En and set v = A(O), where O denotes the origin.

Then the translation Tv is an isometry and

B = T−1v ◦A : x 7→ A(x)−A(O)

is an isometry that fixes the origin. Hence Lemma 1.1.10 shows that B is the matrix

associated to an orthogonal linear map and A(x) = Bx+ v.

Conversely, suppose that B ∈ O(n), v ∈ Rn and A(x) = Bx + v. Then A is the

composition of the isometry associated to B and the isometry translation by v, so it is

also an isometry.

1.1.1 Isometries in E2

Suppose B to be an isometry that fixes the origin. Then

B =

a b

c d

 ∈ O(2).

The columns of B are unit vectors orthogonal to one another, hence, by choosing θ ∈

[0, 2π) and imposing a
c

 =

cos θ

sin θ

 ,

for the vector

b
d

 there are two possibilities:

b
d

 =

− sin θ

cos θ

 or

b
d

 =

 sin θ

− cos θ

 .

The first case gives a rotation about the origin through an angle θ (or the identity when

θ = 0). The second gives reflection in the line {(x, y) ∈ R2 : y = (tan 1
2θ)x} at an

angle 1
2θ from the x-axis.
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Let B ∈ O(2), p ∈ R2. If we conjugate B by a translation Tp, then we obtain an-

other isometry Tp ◦ B ◦ T−1p . This isometry first translates p back to the origin, then

applies B, and then translates the origin back to p. When B is a rotation through an

angle θ, then Tp ◦B ◦ T−1p is a rotation about Tp(O) = p through an angle θ. When B

is a reflection in a line `, then Tp ◦B ◦ T−1p is reflection in the line Tp(`).

Now consider an isometry A defined in E2 that does not fix the origin. From Proposi-

tion 1.1.11, we have that Ax = Bx + v for some B ∈ O(2) and some vector v ∈ R2.

Depending on B we can have the following cases.

• When B is the identity, then A is a translation by v.

• When B is a rotation, we can always choose a vector p such that (I − B)p = v.

This means that

Tp ◦B ◦ T−1p (x) = Bx+ (I −B)p = Bx+ v.

So the isometry A is a rotation about the point p.

• When B is a reflection in a line ` trough the origin, then there exist v1, v2 ∈ R2

such that v1 is perpendicular to `, v2 is parallel to ` and v = v1 + v2. The linear

map I − B maps onto the vector subspace of vectors perpendicular to `, so we

can choose a vector p with (I −B)p = v1. This means that

Tp ◦B ◦ T−1p (x) = Bx+ (I −B)p = Bx+ v1.

So Ax = Bx+ v = Tp ◦B ◦ T−1p (x) + v2. Furthermore:

– when v2 = 0, A is reflection in the line ` translated by p;

– when v2 6= 0, A is a glide reflection, which is a reflection in the line `

translated by p followed by a translation parallel to `.
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Here follows a proposition distinguishing between orientation preserving isome-

tries and orientation reserving isometries. The notion of these two categories of isome-

tries is introduced in Subsection 1.1.3.

Proposition 1.1.12. An orientation preserving isometry of the Euclidean plane E2 is:

1. the identity I;

2. a translation Tv, with v ∈ E2;

3. a rotation about some point c ∈ E2.

An orientation reversing isometry of E2 is:

1. a reflection R`, with ` a line in E2;

2. a glide reflection.

1.1.2 Isometries in E3

With reasonings analogous to those for E2, the following is the proposition for isome-

tries of E3.

Proposition 1.1.13. An orientation preserving isometry of Euclidean space E3 is:

1. the identity I;

2. a translation Tv, with v ∈ E3;

3. a rotation about some line `;

4. a screw rotation, that is a rotation about some line ` followed by a translation

parallel to `;

An orientation reversing isometry of E3 is:
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1. a reflection Rπ, with π a plane in E3;

2. a glide reflection, that in E3 is a reflection in a plane π followed by a translation

parallel to π;

3. a rotatory reflection, that is a rotation about some axis ` followed by reflection in

a plane perpendicular to `.

1.1.3 Other results for Isom(En)

Recalling that, for Proposition 1.1.11, every A ∈ Isom(En) can be written as A(x) =

Bx+ v with B ∈ O(n) and v ∈ Rn, we define the map

Φ : Isom(En)→ O(n) by A 7→ B. (1.6)

Proposition 1.1.14. The map Φ defined in (1.6) given above is a group homomorphism

with kernel equal to the group Trans(En) of all the translations of En.

Proof. LetA1, A2 be two isometries such thatAkx = Bkx+vk for every x ∈ Rn, with

Bk ∈ O(n), vk ∈ Rn, for k = 1, 2. Then

(A2 ◦A1)(x) = A2(B1x+ v1) = B2(B1x+ v1) + v2 = (B2B1)x+ (B2v1 + v2).

Hence,

Φ(A2 ◦A1) = B2B1 = Φ(A2)Φ(A1)

which shows that Φ is a group homomorphism. The isometry A : x 7→ Bx+ v is in the

kernel of Φ when Φ(A) = B = I . This means that A is a translation.

We define another important homomorphism from Isom(En) that tells us whether

an isometry preserves or reverses orientation, let it be

ε : Isom(En)→ {−1,+1} by A 7→ det(B), (1.7)
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where A ∈ Isom(En) is such that A(x) = Bx+ v with B ∈ O(n).

ε is a group homomorphism and the group of the orientation preserving isometries,

denoted by Isom+(En), is the kernel of ε. It is a normal subgroup of Isom(En).

Recall that, for any surjective group homomorphism α : G → H , the inverse

images α−1(h) are the cosets of kerα in G. The number of cosets is equal to the

number of elements in H and is called the index of kerα in G. Since ε : Isom(En)→

{−1,+1} is a group homomorphism onto {−1,+1}, the subgroup Isom+(En) has

index 2 in Isom(En). This means that it has just two cosets Isom+(En) = ε−1(+1)

and the complement Isom−(En) = ε−1(−1). For any orientation reversing isometry

J , we have that Isom−(En) = J Isom+(En).

Let G be a subgroup of Isom(En). The group G+ = G∩ Isom+(En) is the set of

the orientation preserving isometries in G.

Observation 1.1.15. Proposition 1.1.11 is translated in the fact that eachA ∈ Isom(En)

is affine, so

A(
n∑
j=1

λjxj) =
n∑
j=1

λjA(xj) provided that
n∑
j=1

λj = 1.

Observation 1.1.16. Let G be a finite subgroup of Isom(En), let a ∈ En. Considering

the action of G on En, the centroid of the orbit of a is

c =
1

|G|
∑
T∈G

T (a).

Observe that A(c) = c for each A ∈ G. Therefore all of the elements of G fix the point

c.

Proposition 1.1.17. A finite subgroupG of Isom(E2) is either a cyclic group consisting

of N rotations through angles 2πk/N , k = 0, 1, 2, . . . , N − 1, about some point c, or

else a group consisting of N rotations through angles 2πk/N , k = 0, 1, 2, . . . , N − 1,

about some point c and N reflections in lines through c (this group is called dihedral

group).
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Proof. The centroid c is fixed by all of the isometries in G (Observation 1.1.16).

The subgroup G+ is also a finite group, suppose it has order N . Then each trans-

formation A ∈ G+ is a rotation about c with AN = I . Hence A must be a rotation

through an angle 2πk/N for some integer k ∈ {0, 1, 2, . . . , N − 1}. There are only

N such rotations about c so all of them must lie in G+. Hence G+ must be the cyclic

group of order N generated by a rotation R about c through an angle 2π/N .

If G consists only of orientation preserving isometries, G = G+ is cyclic. Other-

wise, there must be an orientation reversing isometry M in G \ G+. This fixes c so it

must be a reflection in a line ` through c. The homomorphism ε : G→ {−1,+1}maps

G+ onto +1 and the coset G+M onto −1, so |G| = 2N .

The products M,RM,R2M, . . . , RN−1M are all distinct and are reflections in the

line obtained by rotating ` about c through angles πk/N for k = 0, 1, 2, . . . , N − 1

respectively. So we see that G is dihedral of order 2N .

1.2 Object symmetries

In the context of geometry modeling, we consider geometric transformations as the

“symmetry operations”, such as reflections, translations, rotations, or combinations

thereof ([23]). Formally in mathematics, referring to the 3D case, symmetries are trans-

formations that, applied to an object intended as its geometric model, preserve its shape.

Definition 1.2.1. We say that a object M is (globally) symmetric with respect to T ∈

Isom(E3), if M = T (M), i.e., M is invariant under the action of T ([23]).

Definition 1.2.2. The symmetry group of a geometric object M is the set SM defined

as ([23])

SM = {T ∈ Isom(E3) : T (M) = M}. (1.8)

SM is a subgroup of Isom(E3):
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• Closure. If T1, T2 ∈ S, then T2 ◦ T1 ∈ SM .

• Identity element. The identity transformation I ∈ SM .

• Inverse element. For each T ∈ SM there exists an element T−1 ∈ SM such that

T−1 ◦ T = T ◦ T−1 = I .

• Associativity. (T1 ◦ T2) ◦ T3 = T1 ◦ (T2 ◦ T3), ∀T1, T2, T3 ∈ SM

This exact and global symmetry leads to a group structure because after applying a

transformation, we end up with the same situation as before, creating a closed algebraic

structure.

Definition 1.2.3. Let M1,M2 be two geometric objects. We say that M1 and M2 are

congruent if there exist T ∈ Isom(E3) such that T (M1) = M2 ([15]).

Definition 1.2.4. Let M be a geometric object. M ′ such that M ′ ⊆ M is called a

sub-part of M .

Definition 1.2.5. Let M be a geometric object. We say that M has a partial symmetry

with respect to an isometry T if there exist two sub-parts M1,M2 of M such that they

are congruent by T [23].

Observation 1.2.6. If in the previous definition M1 = M2 = M , the object is globally

symmetric. So global symmetry is a special case of partial symmetry.

1.2.1 Examples in 2D

Now we show some examples of symmetry groups in the 2D case.

In Figure 1.1 the dihedral group D3 is graphically represented (see also Proposition

1.1.17): this group of six elements represents the symmetries of the equilateral triangle.

Figures 1.1 a), 1.1 b), 1.1 c) indicate the three symmetries representing rotations. Note

that a rotation of 360◦ is equal to the identity transformation. Figures 1.2 d), 1.2 e), 1.2
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Figure 1.1: The dihedral group D3 (source [23]).

Figure 1.2: a) Triskelion; b) Circle: O(2) is the symmetry group of this shape (source [23]).

f) refer to the three reflectional symmetries across the lines from each vertex through

the triangle center [23].

In general, the dihedral group Dn represents the symmetry group of a regular n-

gon and the symmetries can be represented as finite combinations of two generating

transformations: the rotation through angle 2π/n and a reflection.

In Figure 1.2 a) there is an example of shape with rotational symmetries but no

reflectional symmetries. The name of this shape is triskelion and it is characterized by

a cyclic group (see Proposition 1.1.17), denoted by C3, whose generator is the rotation

through angle 2π/3. C3 is a finite group and has three elements [23].

In general, the cyclic group Cn is generated by the rotation through angle 2π/n.
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Figure 1.3: Frieze groups: they are composed of translation, rotation by 180◦, glide reflection,

reflection about a horizontal line, or reflection about a vertical line. (source [23]).

Figure 1.4: Tiling patterns of Alhambra: they are described by wallpaper groups. (source

[23]).
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The symmetry group of the circle (see Figure 1.2 b)) is represented by all the isome-

tries that leave the origin fixed, so the orthogonal linear maps associated to the matrices

in O(n) (as stated by Lemma 1.1.10). Indeed, the circle is symmetric with respect to ro-

tations of arbitrary angle around its center and reflections across arbitrary lines through

its center.

Symmetry groups have been used extensively in the study of decorative art and

structural ornaments. The symmetries of a two-dimensional surface that is repetitive

in one direction and extends to infinity along that direction can be classified by one

of exactly seven Frieze groups [20], [23]. Figure 1.3 contains their representation.

If repetition occurs in two different directions, seventeen distinct groups are possible,

denoted as wallpaper groups (from [23], see Figure 1.4).

1.2.2 Symmetries for applications: approximate symmetries

In this subsection we will report a set of definitions strictly related to the applications

and to the works described in the Chapter 2. For these reasons the definitions will

take into account a tolerance factor and will not request exact equality, accepting the

correspondence except for a given tolerance constant.

The following is the definition of approximate symmetry (from [23]).

Definition 1.2.7. Let d be a function that we intend as the indicator of the “distance”

between two geometric object from being congruent. We say that M is ε-symmetric

with respect to an isometry T if d(M,T (M)) < ε.

Different variants of distance functions have been proposed for the applications,

depending on the specific case (see [23] for more details).

Observation 1.2.8. A difficulty with approximate symmetries is that ε-symmetries are

not closed under composition and thus the group structure is not preserved, while exact
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symmetries do (see Section 1.2). Indeed the situation d(M,T1(M)) < ε, d(M,T2(M)) <

ε but d(M,T2 ◦ T1(M)) ≥ ε could occur.

The references of all the following notions and definitions are [17] and [19].

Suppose to be in a 3-dimensional Euclidean space E3. We denote the set of all

euclidean distances between members of a finite point set P ⊂ E3 asD(P), in formula:

D(P) = {‖P −Q‖ : P,Q ∈ P}. (1.9)

Furthermore, if a, b are two real numbers we write a =ε b to say that |a− b| ≤ ε, i.e. to

say that a and b are approximately equal with tolerance ε.

Definition 1.2.9. Let µ : P1 → P2 be a bijection between two point sets P1,P2, and let

ε ≥ 0 be a tolerance. We say DEC(P1,P2, µ, ε) is satisfied if ‖P − Q‖ =ε ‖µ(P ) −

µ(Q)‖ for all P,Q ∈ P1, and if =ε is an equivalence relation on D(P1) ∪ D(P2). We

define two point sets P1, P2 to be approximately congruent at tolerance ε if, for at least

one of all possible bijections µ : P1 → P2, DEC(P1,P2, µ, ε) is satisfied. We say

that a point set P has an approximate symmetry (µ, ε) for bijection µ : P → P and

tolerance ε if DEC(P,P, µ, ε) is satisfied.

Observation 1.2.10. The condition that =ε forms an equivalence relation means that

the setD(P) is grouped into pairwise distinct subsets of approximately equal distances

(the equivalence classes).

Definition 1.2.11. If a set of points P is approximately symmetric under a bijection

µ : P → P , we call tolerance validity interval the intervalEP = [Emin(P), Emax(P))

containing the values of ε such that (µ, ε) is still an approximate symmetry. Emin(P)

is called the minimal tolerance and Emax(P) is called the maximal tolerance.

Definition 1.2.12. Let C = (P1, . . . , Pc) be a sequence of c ≥ 2 points from a point set

P , which induces a bijection µ mapping Pk to Pk+1 for k = 1, . . . , c− 1. We say that

C is a (maximal approximate) incomplete cycle at tolerance ε ≥ 0 if
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(1) DEC(C, C, µ, ε) is satisfied;

(2) no point in P \ C can replace a point in C while (1) still holds under the same µ

(C must be unambiguous);

(3) no single point in P \C can be added to C for any tolerance ε while still satisfying

properties (1) and (2).

Observation 1.2.13. The given definitions cover all the seven elementary isometries in

3D described in [20]: reflection, inversion, translation, n-fold rotation, n-fold rotation-

reflection (reflection followed by n-fold rotation about an axis orthogonal to the mirror

plane), glide (reflection in a line followed by translation parallel to the line), and screw.

Sometimes only a subset of a set of points could have a symmetry. Here follows

a definition of approximate incomplete symmetry of a subset of points in terms of the

just defined incomplete cycles.

Definition 1.2.14. Let P be a set of points. A point subset S ⊂ P has an (approximate)

incomplete symmetry (µ, ε) of symmetry type t if

(1) S is the union of a set of non-intersecting cycles of type t, each having at least

N(t) points depending on the given type t: for example 2 points if t corresponds

to reflection, inversion, 2-fold rotation; 3 for translation, 3-fold rotation; 4 for

n-fold rotation with n ≥ 4, glide; 5 for n-fold rotation-reflection, screw.

(2) DEC(S,S, µ∗, ε) is satisfied, where µ∗ is the concatenation of the individual µs

of the cycles from (1);

(3) no cycle C∗ of type t in P \ S exists such that (2) is true for C∗ ∪ C at tolerance

less than ε for any cycle C of S .

Now let us consider a particular type of points. In [17] authors widely use character-

istic points: they are model’s vertices and some other special points which characterize
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Figure 1.5: a) Type I of symmetric arrangement of sub-parts; b) Type II of symmetric arrange-

ment of sub-parts (source [17]).

curved edges and faces. These points are able, together with topological and face type

information, to uniquely characterize the model ([13], [22]). They are introduced to

verify the sub-parts of the BRep to be congruent or symmetric in [17]. More precisely,

here a consistency condition is reported with the aim of ensuring matching of entities

of the same geometric type.

Definition 1.2.15. Let µ : H1 → H2 be a bijection between the characteristic point sets

H1,H2 of two sub-parts S1, S2 of a given BRep model. We say µ is consistent if when-

ever a subsetH∗ ⊂ H1 defines an entity of S1, µ(H∗) are corresponding characteristic

points of an entity of the same type of S2.

Furthermore, according to the previous definition: two sub-parts are approximately

congruent if their characteristic point sets are congruent at tolerance ε under a consistent

bijection µ; a sub-part is approximately symmetric at tolerance ε if its characteristic

points are symmetric under a consistent bijection µ.
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1.3 Symmetric arrangements of sub-parts

Now the definitions used in [17] to formally introduce the concept of symmetric ar-

rangements of congruent sub-parts in a 3D model are given. In short, a symmetric

arrangement can be seen as a pattern of congruent sub-parts determined by a symmetry

group. The authors of [17] only consider two particularly important types of pattern of

interest to mechanical engineering, even if the various possibilities can be determined

by 230 space groups ([12]). The definitions make use of the concept of location cycle:

with this term we intend a cycle containing one characteristic point from each congru-

ent sub-parts, such that each of these points is situated in the same location in every

sub-part.

Definition 1.3.1. A set of congruent sub-parts S1, . . . , Ss with characteristic point sets

H1, . . . ,Hs has a symmetric arrangement at tolerance ε if consistent bijections

µk : H1 → Hk, k = 2, . . . , s exist such that for all P1 ∈ H1 with location cycle

C(P1) = (P1, µ2(P1), . . . , µs(P1)), and

• if all location cycles C(P1), P1 ∈ H1 form an incomplete symmetry at tolerance

ε the symmetric arrangement is of Type I;

• if for any other point Q1 ∈ H1, translating cycle C(P1) by vector Q1 − P1 gives

cycle C(Q1) at tolerance ε the symmetric arrangement is of Type II .

A symmetric arrangement can be also interpreted as the repeated application of an

isometric transformation. In Figure 1.6 there is an illustration of some regular struc-

tures. Formally, in [24] a regular structure of size n is defined as a tuple (P,G), where

the set P = {P0, . . . , Pn−1} is a collection of n congruent sub-parts Pk ⊂ S , and

G is a transformation group acting on P . For instance, let G be a 1-parameter group

with T as generating transformation. Then, the element Pk ∈ P can be represented
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Figure 1.6: a) regular structure with 1-parameter group transformation (rotation); b) regular

structure with 2-parameter group transformation (rotation, translation); c) regular structure with

2-parameter group transformation (translation, translation) (source [24]).

Figure 1.7: A 1D regular structure of size 4 and the representation of all the transformations

between the repeated congruent elements (source [24]).

as Pk = T kP0 for k = 0, . . . , n − 1. Furthermore, any element Pi ∈ P of a regu-

lar structure can be transformed into any other element Pj ∈ P by the transformation

Tij = T j−i. In Figure 1.7 there is an example of a 1D regular structure.

In general, the geometry of a k-parameters regular structure (P,G) can be com-

pactly represented by a single sub-part P0 ∈ P , the G group generator(s) T1, . . . , Tk,

and the integer dimension(s) n1, . . . , nk with n1 · . . . · nk = n = |P|. We call P0

the representative element and the tuple (P0, {Ti}, {ni}) the generative model of the

regular structure.

We observe that a regular structure defined in this way can be seen as a repeated par-
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tial symmetry with respect to the isometry T between the sub-parts in P (see Definition

1.2.5).



Chapter 2

Related works

The concept of symmetry has received significant attention in computer graphics and

computer vision research in recent years. Numerous methods have been proposed to

find and extract geometric symmetries and exploit such high-level structural informa-

tion for a wide variety of geometry processing tasks [23]. In the first section we will

provide a classification of the existing symmetry detection approaches for 3D objects,

by differentiating them according to the portion extension of the model the detected reg-

ularities involve. Finally some existing method of interest for this work are examined

in details.

2.1 Classification of symmetry detection methods

Theoretical characterization of symmetry detection algorithms has been a topic of inter-

est in computational geometry. In [23] the main existing symmetry detection algorithms

are classified by considering if the resulting symmetries involve the whole input object

or only parts of it.

• Global symmetry detection algorithms. The global Euclidean symmetries for

finite objects can only occur as reflection or rotation (see Definition 1.2.1). This
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class of algorithm generally exploit an important property shared by all models

exhibiting a global symmetry: the planes of reflection and/or the axes of rotation

pass through their center of mass of the object. This property greatly reduces the

search field for symmetry extraction.

The computation of global symmetries can be further simplified if reliable global

shape descriptors can be computed (as in method described in Section 2.2).

• Partial symmetry detection algorithms. As just observed in Observation 1.2.6,

global symmetries are particular cases of partial symmetries (see Definition 1.2.5).

In general, the algorithm aimed at partial symmetry detection share many simi-

larities in their structure and the main stages of these procedures can be more or

less summarized as follows.

1. Feature/sub-part selection: this stage aims to decompose the entire model

in a set of smaller subsets of interest for the computation.

2. Symmetry collection: identification of the local symmetries information.

3. Extraction: the final stage consists of the detection of the meaningful partial

symmetries obtained from the collection of the detected local symmetries.

Some partial symmetry detection methods of interest will be described in details

in Section 2.3.

2.2 Global symmetry detection algorithms

2.2.1 The Martinet, Soler, Holzschuch, Sillion’s method

The global symmetry detection method proposed by Martinet et al. in [21] focuses

on 3D mesh based models. The main tools used by this algorithm are the generalized

moment functions.
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The authors intend to find an the global symmetry of the input object as an isometry

A represented by a matrix which takes the following form:

A(λ, α) =


λ 0 0

0 cosα sinα

0 sinα cosα

 with


α ∈ [0, 2π[

λ = ±1

(2.1)

This corresponds to three different classes of isometries: rotations, reflections, and their

compositions, depending whether λ is positive and/or α = 0(modπ). The final output

consists of a vector v, called the axis of the isometry, and an angle α, called the angle

of the isometry, such that A(λ, α) maps the shape onto itself.

The approach is deterministic and finds good candidates of v, λ, α by using inter-

mediate functions whose set of symmetries is a superset of the symmetries of the shape

it refers to. These functions are defined in the following.

Definition 2.2.1. For a surface S in a 3D, we define its generalized moment of order 2p

in direction ω by

M2p(ω) =

∫
s∈S
‖s× ω‖2pds. (2.2)

s identifies a vector linking the center of gravity of the shape (placed at the origin)

to a point on the surface.M2p is itself a directional function.

Observe that the denomination of these functions is due to the fact that, considering

S to have a thickness dt, the expressionM2(ω)dt corresponds to the moment of inertia

of the this shell S along ω.

In [21] there is the proof of the following fact: any symmetry A of a shape S also

is a symmetry of all itsM2p moment functions; furthermore, ifM2p has a symmetry

A with axis ω, then the gradient ofM2p is null at ω. In formula

A(S) = S ⇒ ∀ωM2p(A(ω)) =M2p(ω) (2.3)

M2p(A(ω)) =M2p(ω)⇒ (∇M2p)(ω) = 0. (2.4)
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So, once the directions of the zeros of the gradients of the moment functions have been

found, they must be checked on the shape itself to eliminate those not of interest for the

input object, i.e. the false positives.

They provided an efficient method to compute the spherical harmonic coefficients

of the moment functions, avoiding to sampling the functions. In [21] the passages

to decompose M2p into a finite number of spherical harmonics are shown and they

provide an equation to directly compute the corresponding coefficients. The final result

is a decomposition of this type:

M2p =

p∑
l=0

2l∑
m=−2l

C2p
2l,mY

m
2l (ω). (2.5)

The coefficients C2p
2l,m are surface integrals and numerical accuracy only concern this

computation.

This way of computingM2p is much cheaper than the alternative method of com-

puting the scalar product as defined by Equation 2.2 with each spherical harmonic basis

function.

The proposed algorithm takes as starting point the solving of (∇M2p)(ω) = 0.

The first step of this computation is done by estimating a number of vectors which are

close to the actual solutions, then by refining the sphere of directions starting from an

icosahedron, examining the value of ‖(∇M2p)(ω)‖2 in each face in several directions.

Only faces with small minimum values are refined recursively. A descent minimization

on ‖(∇M2p)(ω)‖2 is applied starting from the selected candidates, usually converging

in few steps, because starting positions are by nature very close to actual minima.

Once found the zero directions of the gradient of the moment functions, the pa-

rameters of the corresponding isometric transformations are deterministically extracted

by studying the spherical harmonic coefficients of the moment functions themselves.

These are the properties used (see [14]):

1. A function has a reflectional symmetry Rz around the z = 0 plane if and only if
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all its spherical harmonic coefficients for which l + m is even are equal to zero.

In the specific case of the moment functions:

m ≡ 0(mod2)⇒ C2p
2l,m = 0.

2. A function has a revolution symmetry around z axis if and only if

∀l ∀m m 6= 0⇒ Cml = 0.

3. A function has a rotational symmetry Rotα of angle α around z axis if and only

if

∀l ∀m Cml = cos(mα)Cml − sin(mα)C−ml .

4. In case of composition of a rotation and a symmetry with the same axis the equa-

tion to be checked for is

∀l ∀m (−1)l+mCml = cos(mα)Cml − sin(mα)C−ml .

These properties are checked by admitting a tolerance, so the final detected symmetries

are approximated.

The statement in (2.3) is a necessary condition only. For this reason, the directions

and rotation angles obtained from the moment functions must be verified on the shape

itself. This is done by using a symmetry measure inspired by the work in [29]. Let

S and R be two tassellated shapes, let VS and VR respectively be their mesh vertices.

Then the measure dM between S andR is defined by

dM (S,R) = max
p∈VS

( min
q∈VR

‖p− q‖).

The symmetric measure dA(S) of a shape S with respect to a symmetry A is then

defined by:

dA(S) = max(dM (S, AS), dM (AS,S)).
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This is the last step of the algorithm for single shape symmetry detection.

The authors of this work also provided a constructive algorithm for composite

shapes built by assembling simpler structures. This algorithm first compute the symme-

tries of sub-parts by applying the just described algorithm, considering each sub-parts

as an independent entity, then iteratively builds the set of symmetries of the composite

shape, taking into account both the relative positions of the subparts and their relative

orientations.

In conclusion, the presented method is an efficient approach to accurately retrieve

symmetries in geometric mesh based models, independently of their tassellation. Com-

puting the generalized moment functions by spherical harmonic coefficients, the algo-

rithm allows to find potential symmetry quickly and with a good accuracy.

We are interested in detecting symmetries and regularities in BRep models, which

do not present a sufficient number of vertices to apply the just described approach.

2.3 Partial symmetry detection algorithms

In this section the outstanding steps followed by four symmetry detection methods ad-

dressed to partial symmetry retrieval are reported.

For the first detection method, the contents of two reference papers have been re-

ported. Indeed, the first paper describes an approach of symmetry detection referred to

a discrete point set, although the shape models this research focuses on are boundary

representations, but it is preliminary for the second one, referred to BRep. Furthermore,

the just cited discrete point set detection method is very close to the approach proposed

in Chapter 3.

These four works have been chosen from the existing ones because they are more

relevant for this work subject.



Related works 27

2.3.1 The Li, Langbein, Martin’s method

The proposed symmetry detection approach for discrete point set

In this section the symmetry detection approach proposed by Li, Langbein and Martin

in 2007 for [19] is summarized. The aim of their method is to detect local approximate

symmetries in a discrete point set derived from a BRep model. These points are care-

fully chosen characteristic points (introduced in Chap. 1 Subsection 1.2.2) extracted

from the input model. The work is a preliminary of the algorithm proposed by the same

authors in the reference paper [17] and the following results are strongly exploited in it.

The symmetries will be detected by using cycles defined in Chap. 1, Subsec.1.2.2.

The symmetry transformations detected by the proposed method are limited to rotation

and rotation-reflection, as both these transformations are detected through finite cycles

use, i.e. if we apply the symmetry operation a sufficient number of times, the points go

back to their original permutation. Rotational symmetry cycles will be represented as

vertices of an approximately regular polygon (the description is provided for a 2D point

set), and rotation-reflection symmetry (reflection in a plane followed by rotation about

an axis perpendicular to that plane, so for a 3D point set) will be seen as vertices of

an anti-prism (an n-sided anti-prism is a polyhedron composed of two parallel copies

of some particular n-sided polygon, connected by an alternating band of triangles, see

Fig. 2.2).

The basic idea of the algorithm can be clarified by this simple description of an

example in case of exact symmetry in R2. Let P1, P2, P3 ∈ R2 be the vertices of an

isosceles triangle with ‖P1 − P2‖ = ‖P2 − P3‖ and ‖P1 − P3‖ ≥ ‖P1 − P2‖ (as in

Figure 2.1(a)). These three points partially define a rotation (P1 moves to P2 and P2

moves to P3) which could potentially represent the symmetry of a regular polygon. The

rotation is correctly defined if the image of P3 is such that

‖P4 − P3‖ = ‖P2 − P1‖, ‖P4 − P2‖ = ‖P3 − P1‖. (2.6)
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Figure 2.1: (a) Expansion from three points in 2D; (b) expansion from three points in 3D

(source [17]).

There are two possible locations for P4, but only one of these lies on the same side of

the line P2P3 as P1 (the one denoted as P4 in Figure 2.1(a)) and it is the right one to add

to the polygon expansion. In the same way, another point P5 can be chosen as image

of P4, by replacing (P1, P2, P3, P4) by (P2, P3, P4, P5) in (2.6). Then, applying this

expansion process iteratively, the method could eventually lead to a polygon cycle.

In the approximate case, which is the situation corresponding to the real applica-

tions, the difficulties arise because of the possibility of accumulation of errors during

the process of expansion and the need of choosing a tolerance.

The first problem is solved by adding further constraints to determine the next ex-

pansion point. With reference to the previous example of exact symmetry, in order to

determine the expansion point P5 from the current seed set (P1, P2, P3, P4), instead of

requiring at some tolerance ε that ‖P5−P4‖ =ε ‖P4−P3‖ and ‖P5−P3‖ =ε ‖P4−P2‖,

stronger approximate equality conditions are required involving all the distances within

the same distance group (coherence with Definition 1.2.9), i.e.

‖P5 − P4‖ =ε ‖Pk+1 − Pk‖ k = 1, 2, 3

‖P5 − P3‖ =ε ‖Pk+2 − Pk‖ k = 1, 2

‖P5 − P2‖ =ε ‖P4 − P1‖

(2.7)

Then the reasoning can be easily applied to successive expansion points. All can be
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Figure 2.2: The lateral surface of an anti-prism (source [19]).

summarized in the following way: let C ⊂ E2 be a cycle of c = |C| points at tolerance

ε. The cycle C = {Pk : 1 ≤ k ≤ c} can be seen as generated by a permutation that

maps Pl to Pk, satisfying for each 1 ≤ r ≤ c− 1

‖Pl − P(l+r)modc‖ =ε ‖Pk − P(k+r)modc‖ for 1 ≤ l, k ≤ c. (2.8)

All the distances between point pairs (Pl, Pk), with l− k = r or l− k = c− r, are

approximately the same at tolerance ε and, since =ε is an equivalence relation on the set

D(C) (see Definition 1.2.9 in previous chapter), each group of distances between point

pairs with index differences r or c− r corresponds to one equivalence class.

As for the tolerance computation, the proposed algorithm finds suitable tolerances

during the process instead of using a predetermined value. The basic idea is the fol-

lowing (see Definition 1.2.11 of the previous chapter for notations): if a point P is a

valid expansion point during the process for a current set S, the values Emin(S ∪{P}),

Emax(S ∪ {P}) are computed using inter-point distances (these values depend on the

difference between the maximum and the minimum distance in each distance class,

more details are reported in [19]) and the following relationship must be satisfied

Emin(S ∪ {P}) < Emax(S ∪ {P}). (2.9)

In 3D, the two symmetry transformations considered in the reference paper are

rotation and rotation-reflection. The rotation case is analogous to the description of

polygon creation given for the 2D case. The rotation-reflection expansion process aims
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to the construction of a shape that can be viewed as an anti-prism (see Figure 2.2).

Supposing to be in the exact case as already done in 2D and supposing to start from a

seed set of points {P1, P2, P3} (see Figure 2.1(b)), if P4 lies on the plane P1, P2, P3

the only valid and possible solution the algorithm could lead to is a polygon (rotation),

otherwise the described method could only lead to an anti-prism arrangement of points

(rotation-reflection) if it exists. A more detailed explanation can be found in [19]. As

in 2D, the proposed algorithm computes at every step a suitable tolerance to determine

the best unambiguous cycle as output.

In conclusion, with a time complexity of O(Cn4), where n is the number of points

in the input point set and C is the current maximal symmetry order, the presented algo-

rithm can help to detect symmetries in a BRep model by using characteristic points to

find unambiguous cycles among them, as will be immediately explained here below.

The principles of a specific stage of the approach proposed in Chapter 3, regarding

the path searching of points, are very close to the just described method, anyway we

tried to avoid to verify the entire set of equations 2.6 whenever a new candidate point

exists. Furthermore, we will find a way to foresee the existence of significant cycles by

verifying the existence of a dominant point distances.

The proposed symmetry detection approach for BRep

This work presented in [17] aims mainly to detect design intent in boundary repre-

sentation models, embodied as intentional congruencies, symmetries and symmetric

arrangements of the sub-parts deriving from the decomposition of the model.

One of the main characteristics of this approach is the construction of a regularity

feature tree (RFT): it is a structure representing a hierarchical decomposition of the

BRep model in simple, closed volumes which in combination describe the original

shape and that are selected because more symmetric than other parts, called regularity

features or leaf-parts. More details about RFT construction can be found in [18]. More
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than one RFT may exist, each with a different validity interval. Let T be a RFT, the

user is asked to make a simple choice of a suitable tolerance interval ET that is used

to establish a specific RFT. The results do not depend on this arbitrary choice, as most

tolerances are inferred automatically from the distances present in the model.

This method makes strong use of characteristic points (already introduced in Chap.

1, Subsec. 1.2.2). Regularities of the solid are detected using mappings between char-

acteristic point sets.

The second step of the algorithm consists on the detection of the congruencies be-

tween the sub-parts to partition the regularity features in congruence sets. Given a set

L of leaf-parts and the validity interval ET from the RFT construction, a hierarchical

grouping is applied to the elements of L and each congruence set contains:

• a set of leaf-parts Ck;

• the point mappings ΓCk
, giving all the pairwise congruency matching between

the leaf-parts;

• the computed validity interval ECk
for each set of leaf parts.

Essentially, a clustering algorithm (see [17] for details) is applied in this phase to cluster

leaf-parts into respective congruence set.

Once this grouping is done, incomplete symmetries are searched in every congru-

ence set. First a symmetry is found in an exemplar leaf-part, then this symmetry can

be transferred to all the other leaf-parts of the congruence set using the individuated

congruence mappings. This phase consists on searching Type I symmetric arrangement

of faces of the leaf-part (see Definition 1.3.1). This goal is achieved by subdividing

faces in congruence sets (as done with leaf-parts before), by finding incomplete cycles

of the centroids of the faces in the leaf-part and by using them to find Type I symmetric

arrangement of faces. Finally, these are merged into compatible symmetry transforma-

tions.
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Incomplete cycles (defined in Chap. 1, Subsec. 1.2.2) in point sets detection are

used both in incomplete symmetry and symmetric arrangement detection. The incom-

plete cycles construction concept has been described in the approach proposed for dis-

crete point sets, even if in this work also cycles are considered. Different type of in-

complete cycle could lead to different type of symmetry. Notice that the special case of

translational symmetry arises when the first three points composing the initial isosceles

triangle are collinear. More precisely, the algorithm considers approximate incomplete

cycle (see [17] for details) and provides an accurately calculated validity interval.

Symmetric arrangements of the elements of a congruence set are detected by first

detecting incomplete cycles formed by the centroids of the leaf parts and then selecting

those which also match the leaf-parts. The leaf-parts matching is verified by charac-

teristics points parts usage: in case of Type I symmetric arrangement, cycle of leaf-

parts centroids must be compatible with location cycles for corresponding characteris-

tics points, one from each leaf-parts, while cycle must be linked by a translation for

Type II symmetric arrangement (see Definition 1.3.1). Congruency mappings clarify

which characteristic point of a leaf-parts corresponds to a characteristic point of an-

other one. Cycles of centroids induce the search of a precise type of cycle for charac-

teristic points and to achieve it global symmetries are necessary, because by combining

these symmetries with the congruencies all possible ways of matching the leaf-parts are

revealed. More precisely, if P 1
l is a characteristic point of the leaf-part L1, we must

put it in correspondence with all points of the leaf-part Lk resulting from γk(g(P 1
l )),

where γk : L1 → Lk is the congruence mapping between L1 and Lk and g a global

symmetry in the set of global symmetries detected for the congruence set. These global

symmetries are found by filtering the set of all detected incomplete symmetries. The

detected cycles between characteristic points are possibly merged to see if they can be

represented by a single isometry.

Incomplete cycles merging is used both in incomplete symmetries detection and
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symmetric arrangements detection. The essential steps of this stage are:

1. to detect the possible types of symmetry corresponding to the cycles;

2. to cluster the cycles of the same symmetry type to find the final arrangement.

In conclusion, the approach proposed in [17] provides a good and robust algorithm

to detect regularities in BRep models, as confirmed by the tests performed by the au-

thors. The main lacks of this method could be the strong unambiguity condition used

in cycle building, which could be very sensitive to the presence of noisy points that

may disrupt a generally well-defined regularity, and the strict dependence of the regu-

larities detected on the RFT decomposition, which could influence the entire detection

process.

2.3.2 The Pauly, Mitra, Wallner, Pottmann, Guibas’ method

Pauly, Mitra, Wallner, Pottmann and Guibas [24] introduced in 2008 an algorithm to

describe and classify possible regular structures in terms of repeated geometric patterns

in 3D shapes coming from point or mesh based models.

In the presented work they observed that repetitive patterns are generated by com-

bining and applying a small number of generative transformations to geometry building

blocks. The main phases of the method are:

1. model decomposition into small local surface patches, estimation and analysis of

similarity transformation between them;

2. estimation of parameters of the generative model that gives rise to these patterns;

3. spatially adjacent patches aggregation to build larger repetitive elements.

So, formally, given a surface S defining a shape, the aim of the algorithm in [24]

is to find a generative model (P0, {Ti}, {ni}) such that the union of the elements in
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P = {P0, . . . , Pn−1 covers as much of the surface S as possible and minimizing the

number of repetition n at the same time. Actually, the transformation group and P are

unknown and must be estimated simultaneously by the method.

The very first step consists on computing a uniform random sampling of the input

model S with average sample spacing h.

A regular structure can be detected by analyzing the similarity transformations that

map pairs of these patches onto each other. For this purpose patches are grouped into

similarity sets Ωl using a local shape descriptor that is invariant under similarity trans-

formations. For each sample point the mean and Gaussian curvatures H and K respec-

tively are estimated, then samples are grouped according to the value H2/K which is

invariant under uniform scaling, rotation, and translation. If no scaling is involved, we

can further split the similarity sets based on the values of (H,K). The descriptor is

presented in details in [8]. They noticed that large collections of similar patches are

more likely to contain a regular structure of significant size.

Let Ω be a similarity set selected as just described. In this phase the goal is to

understand whether elements of Ω form a regular structure and, if so, estimate the

parameters of the underlying transformation group deriving them from the collection

T = {Tij |pi,pj ∈ Ω}, where Tij is the pairwise transformation mapping sample pi
to sample pj . In particular, translation and rotation can be derived by aligning the lo-

cal frames computed from the surface normal and principal curvature directions. The

uniform scaling factor can be calculated from the ratio of corresponding mean curva-

tures Hi/Hj . Geometric registration (the description of the procedure can be found in

[26]) is used to improve the accuracy of the estimated similarity transformation and to

discard the incorrect matches.

To compute the group generators from the set T the authors of the paper used the

fact that spacial coherence of regular structures leads to strong accumulative patterns

in the corresponding transformation space. In case of translational transformations,
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without scaling and/or rotation, the more noticeable properties of the resulting pattern

are arrangements of the transformations of the underlying transformation group on a

2D plane through the origin in the space of transformations and an undeniable accu-

mulation in clusters that form a uniformly spaced grid. In case of patterns involving

scaling and/or rotation involving instead, transformations usually cluster at points on

a curved manifold, which is more difficult to detect. For this reason, they introduce a

suitable mapping function that allows a similar uniform 2D lattice structure for non-

translational structures. They underline the importance of considering variables of the

transformation that are invariant under a change of origin, since the translation compo-

nent depends on the center of scaling and the axis of rotation. Therefore, the properties

of the transformation considered are quantities such as the scaling factor s, the rotation

angle θ, and the direction of the axis of rotation that can be extracted from the estimated

transformation matrix Hij of a sample pair (pi,pj).

The approach to establish which class of commutative 2-parameters structure (see

also Chap. 1, Section 1.1) the case falls in is as follows: if a significant fraction of

the transformations have zero rotation angle, the model can only contain regular struc-

tures of type “Translation × Translation”; else, if there are a significant number

of rotations, the method separates all transformations into sets with similar direction

of rotation axis (since group transformations of a rotational structure need to have co-

incident axis directions) and then, if there is a significant variation in scaling factors

the model potentially contains regular structures of type “Rotation × Scale”, other-

wise, if there is a translations parallel to the axis of rotation (which is the only possible

to stay in a commutative 2-parameter group), the model contains regular structures of

type “Rotation× Translation”.

The parameters used in each class of structure are in a form such that each of the

three mappings has the crucial property that composition of similarities corresponds to

the sum of the 2-dimensional vectors of the parameters in transformation space.
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In the model estimation step authors try to obtain an estimate of the parameters of

the generative model of a regular structure. Here, the two main problems are that there

could be spurious clusters that are not part of the regular structure and that clusters that

instead should be present are missing or too weak. For these reasons, the authors pro-

posed a grid fitting approach able to face also outliers and holes. This method operates

on a set of cluster centers C = {ck} that they extract from the set of transformations

mapped to a 2D space (thanks to the regular 2D lattice structure). They use mean-shift

clustering for this purpose (see [10] for references). Since the identity transformation

is always part of a transformation group, the grid must pass through the origin. Let

X = {xij} be the n1 × n2 regular grid to fit, the grid location can be represented with

two vectors g1, g2 ∈ R2 such that xij = ig1 + jg2, −n1 < i < n1 and −n2 < j < n2.

Then, to find the unknown grid generators g1, g2 they apply an optimization that com-

bines different energy terms (see [24] for more details).

The final step consists of extracting large-scale repetitive elements and optimize the

generating transformations. The proposed aggregation method alternates between local

region growing and coupled registration. The result is aggregation of spatially adjacent

patches of regular structures with compatible group structure, identified more precisely

with the aid of the evaluation of the alignment error of the registration.

The just described detection algorithm takes in input a point cloud or a surface

mesh, and, after the specification of the sample spacing h, can provide the set of de-

tected regular structure, without any additional user assistance. The main limitation is

that currently this method cannot find generative model in case of “warped”sequential

repetitive patterns of patches P1, . . . , Pn, where the transformation Ti,i+1 mapping Pi

to Pi+1 is changing with the index i.
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2.3.3 The Jiang, Chen, He’s method

The approach proposed by Jiang, Chen, He [15] aims to detect global exact rotational

and reflectional symmetries in feature-based CAD models, differing for the fact that

the basic unit of symmetry detection is the feature, while usually it is the face. Input

considered in this method consists of CAD models created by Boolean combinations

of design features. The set of features supported in this work are: Pad, Shaft, Rib,

Stiffener, Pocket, Slot, Shell, Groove, Hole, Fillet, Chamfer, Draft, Mirror and Pattern

(Circular Pattern, Rectangular Pattern, User-defined Pattern).

The main idea of the approach is to detect as many symmetries in the features

of a model M as possible by using only feature information (such as feature types,

parameters, sketches, references and building histories).

Not all the symmetries in a feature set can be detected by using only feature infor-

mation. Therefore, in this set of well identified situations (e.g. feature intersection) the

geometric shapes of the features, which can be described by its real faces, are used to

detect the symmetries of the feature sets. The real faces of a feature f are the faces

belonging to feature f that, once the feature has been added to the model, they are ef-

fectively a face of the model.

Here are reported some definitions necessary for the comprehension:

• Let {M1,M2, . . . ,Mn} be a finite set of geometric objects in 3D. If there exists

a rotational or reflectional transformation T which satisfies the following two

conditions:

1. T is a permutation for the set {M1,M2, . . . ,Mn};

2. T (Mi) 6= Mi for i = 1, . . . , n, i.e. T is not a symmetry of any object in

{M1,M2, . . . ,Mn},

then T is said to be an inter-symmetry of the object set {M1,M2, . . . ,Mn}.
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The set of all the inter-symmetries of {M1,M2, . . . ,Mn} is denoted as

Sinter({M1,M2, . . . ,Mn}). An inter-symmetry can exist if and only if Mi and

Mj are congruent for every i, j ∈ {M1,M2, . . . ,Mn} (see Definition 1.2.3).

• Let M be an object and S(M) = {s1}. If M is symmetric under s2, then we

say s2 is no stronger than s1, and s1 is no weaker than s2, which is denoted as

s2 ≤ s1 or s1 ≥ s2.

• Given two symmetries s1, s2, the strongest symmetry s among the ones that are

no stronger than s1 and s2, is called the merging of s1 and s2, denoted as s =

s1 ∪ s2. It is the strongest symmetry among the ones under which both M1 and

M2 are symmetric, so s1 ∪ s2 ∈ S(M1 ∪M2).

• Let M1,M2 be two objects. If for any si ∈ S(M2), M1 is symmetric under si,

then we say S(M2) is no stronger than S(M1) and S(M1) is no weaker than

S(M2), which is denoted as S(M2) ≤ S(M1) or S(M1) ≥ S(M2).

Suppose that M1 and M2 are two volumetric objects in 3D, that they are built by

the unions of features, and that for any feature fi that is used to build M1 and any fj

that is used to buildM2, fi and fj are incongruent. The aim is computing S(M1∪M2).

The authors observed that S(M1 ∪M2), under the cited hypothesis, depends only on

S(M1) and S(M2) and not on the inter-symmetries between the two objects.

If S(M1) = ∅ or S(M2) = ∅, then S(M1 ∪M2) = ∅.

If S(M1) 6= ∅ and S(M1) is known, suppose that S(M1) = {s11, s12, . . . , s1n},

S(M2) = {s21, s22, . . . , s2m} and for any s1i, s1j ∈ S(M1), 1 ≤ i, j ≤ n, i 6= j, let

s1i ∪ s1j be null, the same applies to S(M2). Then,

S(M1∪M2) = {s1i∪s2j : s1i ∈ S(M1), s2j ∈ S(M2), i = 1, 2, . . . , n, j = 1, 2, . . . ,m}.

(2.10)

The result of merging of S(M1) and S(M2) is denoted as S(M1) ∪S S(M2).
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Various cases are now considered.

• S(M2) is known. Let A be a null symmetry set, select the first symmetry s11 in

S(M1), compute the merging of s11 and the symmetries in S(M2) one by one.

If s11 can be successfully merged by s2j in S(M2), then we know there exist no

other symmetries in S(M2) that can successfully merge s11, thus add s11 ∪ s2j

to A. Then, handle the next symmetry s12 in S(M1) as we do with s11, and go in

this way until the last symmetry in S(M1). Finally, S(M1 ∪M2) = A.

• S(M2) is unknown. From expression (2.10) follows that S(M1) ≥ S(M1 ∪M2)

and S(M2) ≥ S(M1 ∪ M2). So S(M1 ∪ M2) can be obtained by verifying

whether M1 ∪M2 satisfies the symmetries which are no stronger than those of

S(M1).

• S(M2) is partly known. The part of S(M2) which is known is denoted asPS(M2).

The approach to obtain S(M1 ∪M2) involves both the above cases.

The just described procedure is applied after a construction of the parent–child re-

lationships of the topological elements in the model and a feature classification in con-

gruent feature sets. First, single feature symmetries have to be detected by using only

feature information (for example using 2D sketches, by the approach described in [5]).

Then symmetries of feature sets are detected. Given a feature set FS of u elements,the

approach of deriving the set of detected symmetries of FS by using only feature infor-

mation, denoted by Sd(FS), is:

• if u = 1, then Sd(FS) corresponds to the symmetries of the single feature;

• if u ≥ 2, then the feature in FS that belongs to the same Mirror or Pattern fea-

ture are grouped together as a single feature. Once it is done, for each group

of feature USD (unit for symmetry detection) Sd(USD) is derived from fea-

ture information. Then, if FS = {USD1, USD2, . . . , USDq}, q ≤ u, the
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approach described in “S(M2) is known” is applied q − 1 times to compute

Sd(USDi) ∪S Sd(USDi+1) and the computation result is Sd(FS) (⊂ S(FS)).

S(FS) is tagged as undetermined if Sd(FS) 6= ∅, as partly determined if part of

S(FS) has been detected, as determined if S(FS) has been totally detected by

using only feature information.

Finally the feature sets are sorted into an ordered sequence (FS1,FS2, . . .FSm) by

using criteria to optimize the number of operations (see [15] for more details), the

symmetries are merged in each feature sets by using the usual merging process.

The advantage of the choice of considering the feature as the basic unit of sym-

metry detection is the independence of the efficiency from the number of faces in the

input model, and this is a strong point of this method respect to the face-based existing

methods. Meanwhile, this approach could detect a limited number of symmetries if the

input models contain less feature information than they could because of the followed

design approach.

2.3.4 The Li, Foucault, Léon, Trlin’s method

The symmetry detection algorithm proposed by Li, Foucault, Léon, Trlin in 2014 [16]

aims to identify rotational and planar reflective symmetry considering as input BRep

CAD models bounded by a 2-manifold, with the objective of restructuring the object

feature tree and the relative information. Analyzing the local as well as the global

symmetry properties of a solid is useful to reorganize its feature tree so that it becomes

more intuitive. The result is a compressed model that replicates the input model and

that should maintain the accuracy of the manufacturing process, at least. This fact is

formalized in the following way: let M , M ′ and T be respectively the input object,

the compressed one and the geometric transformation expressing the symmetry. Then,

the replication error of M with M ′, conserving the same shape of M , and T can be
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measured by the Hausdorff distance:

ε = d(M,T (M ′)) = max
(

sup
p∈M

( inf
p′∈M ′

‖p′ − p‖), sup
p′∈M ′

( inf
p∈M
‖p′ − p‖)

)
(2.11)

The condition of validity of M ′ so that M and M ′ can be regarded as identical in the

CAD modeler, so that M ′ cannot be distinguished from the object manufactured from

M, is

ε ≤ δ,

where δ denotes the CAD modeler tolerance expressing the maximal distance between

boundaries of adjacent patches. The validity condition can be expressed as a need

to obtain symmetry properties as accurate as the modeling kernel of a CAD system

since the incorporation of symmetry properties in the feature tree can be considered

significant.

The class of faces considered by this approach is composed by planar, cylindrical,

conical, spherical, toroidal faces.

In the preparation phase, this method takes the boundary of a solid M , denoted as

∂M , and generates a new paving ∂Mmax referred to a new solid Mmax such that it

contains only maximal faces and edges (see Chap. 1 Section 1.6 for maximal faces and

edges definition). It is mandatory that the new paving does not influence the symmetry

properties of M , by its decomposition into faces, edges and vertices. Furthermore, it

must not change the shape of M , i.e. only modifications to adjacencies between faces,

edges and vertices are performed. The paving must meet the validity condition. Another

measure is applied to loop adjacent to other loops through a vertex: it is called the vertex

split operation, which aims to characterize the independence of surfaces around a vertex

so that local symmetry properties can be better represented once loop connection are

removed by splitting their common vertex. See Figure 2.3: the vertex V (signed in red

in Figure 2.3a) is split in three vertices, so that new maximal faces and edges can be

created (in Figure 2.3b) there is a zoom of a changes in the V neighbourhood). It is not
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Figure 2.3: a) V is a regular vertex and the vertex split operation can be applied to it; c) a

zoom of the vertex split operation; c) there are faces adjacent to V ′ sharing the lying surface

that crosses with other faces adjacent to V ′ sharing another lying surface: in this case the vertex

split operation cannot be applied (source [16]).

always possible to apply the vertex split operation to a vertex: the vertex V ′ in Figure

2.3c is an example of these particular case.

The symmetry analysis process for the identification of Global Symmetry Planes

(GSPs) and Global Symmetry Axis (GSAs) is a divide and conquer approach.

The divide phase consists of the generation of Candidate Symmetry Planes (CSPs)

and Candidate Symmetry Axis (CSAs). This step is carried out by analyzing a set of

basic configurations in ∂Mmax to assign CSPs and CSAs valid only locally for set of

one, two or three adjacent faces. Fix the attention on CSPs. The assignment starts from

the supposition that when a GSP Π intersects Mmax, the resulting curve Cc is a closed

curve, for the hypothesis of input. The possible configurations of the curve Cc are here

summarized:

• Cc contains points P that all lie inside a face of ∂Mmax;

• Cc contains points P that all lie on an edge of ∂Mmax;
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Figure 2.4: Taxonomy of configurations of symmetry planes Π intersecting Mmax to define

Cc (source [16]).

• Cc contains a point P that lies exactly on a vertex of an edge E ∈ ∂Mmax;

• Cc contains a point P that lies on an edge of ∂Mmax and it coincides with one of

its vertices;

• Cc contains a point P that lies on an edge of ∂Mmax and it does not coincide

with one of its vertices.

Furthermore, given the set of primitives surfaces describing ∂Mmax, a valid CSP Π is

such that the corresponding Cc is any straight line on a plane, any generatrix or circle

on a cylinder, any generatrix on a cone, any circle containing the center for a sphere,

any small circle or the inner or outer circles on a torus.

The elementary configurations that can define CSPs or CSAs and form a subset of

Cc as well as any couple of loops aiming to the definition of a GSP or a GSA are here

listed. They are classified by observing the neighbourhood of a point P ∈ Cc.
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1. “Surface Symmetry CSP”: it divides a face (the reference examples are Figures

2.4a, 2.4b).

2. “Orthogonal CSP”: it divides an edge and this configuration also produce CSAs

(the reference example is Figures 2.4c).

3. “Bisector CSP”: it divides two faces (the reference example is Figures 2.4d).

4. “Loop Bisector CSP”: it divides two edges (the reference example is Figures

2.4e).

5. “Loop Symmetry CSP”: it divides a face with multiple loops (the reference ex-

ample is Figures 2.4f).

Then, the conquer phase is subdivided in two propagation process.

• First level propagation process. Starting from an arbitrary CSP (or CSA) Π ob-

tained from the previous step, the algorithm propagates to neighboring entities

of ∂Mmax when one of their associated CSPs coincides with the current Π, thus

expanding in the area of ∂Mmax where Π is valid. So a CSP chain is created.

The propagation stops when either a CSP chain forms a loop (i.e. when the set

of adjacent faces attached to Π forms a cycle over ∂Mmax or the coincidence

criterion fails (i.e. asymmetric configuration).

• Second level propagation process. Starting from a CSP chain, the algorithm

evolves from face to face, on both sides of this CSP chain, through adjacency

relationships described in the paving of ∂Mmax. Its purpose is to check that two

pairs of faces, each one located on each side of a CSP chain, are symmetrically

set with respect to Π, the CSP originating the chain. This process stops either

when all the faces of Mmax have been processed or when asymmetric configu-

rations have been encountered everywhere along the domain boundary expanded

from a CSP chain.
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At the end of this phase, if all the faces of Mmax have been covered after the second

propagation process, the CSP become officially a GSP. Otherwise, the symmetry is

limited to the area of Mmax covered by the propagation process (partial symmetry).

CSA can be easily obtained following a process analogue to CSP one.

The just described method is independent of the parameterization of the faces and

edges of the component boundary, but this work refers to a limited set of predefined

types of faces. Furthermore, the objectives of this work are different from ours, as

in the Chapter 3 we aim to find regularities in terms of symmetric arrangements of

congruent sub-parts while the goal of this approach is to find reflectional and rotational

symmetries of the entire input model.
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Chapter 3

The proposed approach

In this chapter a method to detect regular arrangements of congruent sub-parts in a given

BRep model is proposed and described.

A symmetric regularity is an immediate perception for the human visual sense. The

common use of regular arrangements of faces in geometric modeling constituted by

the repetition of an exemplar set of faces, made, as time passes, automatic detection of

these structures an issue of increasing importance.

This method wants to focus on the symmetric arrangements retrieval of repeated

entities in a BRep model, for this reason the starting point of the proposed approach is

the strong hypothesis that the analyzed input sets of faces are granted to correspond to

sub-parts in the model certainly congruent with each other. So, the goal of this work

is the search of a potential regular configurations of given sets of faces, without any

further verification of their nature.

The main lying idea is founded on the awareness that if a set of congruent sub-parts

is characterized by a regular arrangement, then of course also the respective centroids

do. This fact could be taken as a slogan for the proposed method, as it constitutes the

fundamental basis for the successive regularity detection, and could mathematically be
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considered as a necessary condition for the symmetric arrangements existence. The

same starting technique was used by Li, Langbein and Martin in [17] for their proposed

algorithm aiming to design intent detection.

Another cornerstone fact of this approach is the repetition of the constant distance

between two consecutive sub-parts’ centroids involved in a regular configuration of

those belonging to the set of symmetric arrangements considered in this work.

These two important considerations will be better examined in depth in the follow-

ing sections.

3.1 Repeated entities

As just outlined in this Chapter introduction, the input data considered by this algo-

rithm is a set of faces representing the repeated sub-parts which we want to examine to

discover any regular configuration. In practice, what must be provided by the user is

a set of sets of faces and each set of faces must correspond to one of the repeated en-

tities considered. In Chapter 2 a formal definition of congruency of two “objects” has

been provided. Here, we suppose that each given repeated entity is congruent to every

other in the input set. Formally, this discussion can be summarized in the following

definition.

Definition 3.1.1. Let B = (F,E,V) the BRep of a solid object. The user must provide

a set A = {A0, . . . ,An−1}, where the element Ai is itself a BRep and Ai = (Fi,Ei,Vi)

with Fi ⊂ F, Ei ⊂ E, Vi ⊂ V, and Fi ∩ Fj = ∅ if i 6= j for i, j = 0, . . . , n − 1. Let

i ∈ {0, . . . , n− 1}, the element Ai is asked to be congruent to Aj for j = 0, . . . ,

i− 1, i+ 1, . . . , n− 1. The set of n elements A is called the set of repeated entity, each

element Ai is a repeated entity (sometimes we will shortly write RE).

The hypothesis of congruency of the REs requires the input data to grant it and to

be definitely reliable, coherent and well-defined.
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Similarly to the method proposed in [17], where characteristic points cover a fun-

damental role in the symmetry detection, here vertices of the model and other particular

points are fully exploited during the algorithm execution. Firstly, these points are used

to compute a representative point for every RE in the set A provided as input (the cen-

troid). Secondly, they constitute a way to compare REs once a subset of REs of the

initial input set is supposed to be a candidate symmetric arrangement.

3.1.1 Type of faces

The nature of the faces of a boundary representation has already been discussed in

Chapter 1. The faces can be classified depending on the corresponding host surface.

The set of types of faces this algorithm admits and threats are listed here together with

the specifying parameters.

• Planar. The lying planar surface is stored by the coefficients a, b, c, d, obtained

by considering the general geometric equation of a plane in R3, ax+by+cz+d =

0. The vector (a, b, c) corresponds to the normal vector and so it is normalized.

• Cylindrical. The lying cylindrical surface is stored by a point on the axis cylinder

(called origin of the cylinder), the axis direction vector of the cylinder, the line

corresponding to the axis of the cylinder, the radius of the cylinder (radius of a

circumference obtained by cutting the cylinder with a plane perpendicular to the

axis line).

• Conical. The lying conical surface is stored by a point on the axis cone (called

origin of the cone), the axis direction vector of the cone, the line corresponding

to the axis of the cone.

• Spherical. The lying conical surface is stored by the coefficients a, b, c, d, ob-

tained by considering the general geometric equation of a sphere in R3, x2 +
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y2 + z2 + ax+ by + cz + d = 0. Furthermore, the sphere radius and the sphere

center are stored.

• Toroidal. The lying toroidal surface is stored by the torus center, the line corre-

sponding to the axis of the torus, the “major radius” which is the distance between

the center of the torus and the center of the revolved circle, and the “minor radius”

which is the radius of the revolved circle.

These are the classic types of faces commonly used for mechanical objects in BRep

models and that have therefore been considered in this work. The choice of the at-

tributes of the corresponding surfaces have been chosen in such a way because they

are information that can easily be acquired by the Application Programming Interface

of SolidWorks c© (system used in this work, as it will be explained in detail in the next

Chapter), and because these surface information are appropriate for our purpose.

We want to grant the congruency not only of the volume included by the faces cor-

responding to the REs (the resulting REs shape) but also of the boundary decomposition

in cells. For example, complete cylindrical faces are usually built by cutting the face

with an edge having its extremes on the two base edge of the cylindrical face, or even

by cutting the face with two such edges. This is done for BRep validity reasons. On

the other hand, maximal edges and faces are uniquely defined (the meaning of “max-

imal” has been explained in Chapter 1), so we adopt them in the proposed approach,

converting them in maximal in phase of acquisition .

3.1.2 Centroid

Now we introduce a formal definition of centroid of a RE (the references of the follow-

ing definition can be found in [7], where the definition is given for a material point).

Definition 3.1.2. Let P be a set of n material points (a point in R3 provided with a

mass) such that P = {P1, . . . , Pn−1}. Suppose that Pi has coordinates (xPi , yPi , zPi)
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and mi is the associated mass, for i = 0, . . . , n− 1. Then, the centroid C of the set of

points in P is the point defined by the coordinates (xC , yC , zC) resulting from

xC =

∑n−1
i=0 mixPi∑n−1
i=0 mi

, yC =

∑n−1
i=0 miyPi∑n−1
i=0 mi

, zC =

∑n−1
i=0 mizPi∑n−1
i=0 mi

. (3.1)

In our case, we will apply the definition of centroid of a set of points to the set

of vertices of a RE and we will suppose the vertices to have constant mass for every

i = 0, . . . , n− 1, in other words mi = m, with m constant, for i = 0, . . . , n− 1.

So, let Vj be a set of n vertices corresponding to the RE Aj belonging to the input

set of REs, Vj = {Vj,1, . . . , Vj,n−1}. Denote the centroid of the set Vj as Cj with

coordinates (xCj , yCj , zCj ). For instance, xCj value is defined by

xCj =

∑n−1
i=0 m xVj,i∑n−1

i=0 m
=
m
∑n−1

i=0 xVj,i
nm

=

∑n−1
i=0 xVj,i
n

which is the arithmetic mean value of the x coordinates of the vertices in Vj . Analo-

gously yCj and zCj can be obtained in the same way. So the centroid Cj of the set Vj

is the point with coordinates defined by

(∑n−1
i=0 xVj,i
n

,

∑n−1
i=0 yVj,i
n

,

∑n−1
i=0 zVj,i
n

)
(3.2)

For simplicity, we will refer to the centroid of the set of vertices of a RE as the

centroid of the RE.

As just sketched in the introduction of this Chapter, the first phase of this approach

consists on the analysis of the REs’ centroids configuration. This need raises from the

intuition that managing 0-cells is much more handy than directly compare the REs’

faces, without any preliminary selection of the REs from the initial set. To transpose

the problem of finding a regular configuration of sub-parts to a problem of finding a

regular configuration of points, it is necessary to ensure these points to be computed

in the same way for every RE provided by the initial set. In other words it means

that if we could overlap two REs (which are congruent) their corresponding computed
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Figure 3.1: An example of possible REs (highlighted in yellow) without vertices.

representative points should overlap too. It becomes natural to take the centroid of the

vertices of the RE as this representative point, as it is simple to compute and the RE’s

vertices are easily accessible.

Now we discuss the elements of the set of vertices Vj used to compute the centroid

Cj of the RE Aj .

Some adjustments must be applied during the vertices acquisition phase, especially

in case of curved edges presence. The risk of non homogeneous way of computation of

centroids in the various REs raises when there are closed curved edges in the REs. See

Figure 3.1 and consider one of the highlighted REs: closed edges do not have any vertex

lying on them, so in case of exclusive presence of closed edges the set of vertices of

the RE would be void and this would lead to the impossibility of computing a centroid.

The proposed solution is the insertion of two new vertices on each closed edge of the

REs if the lying curve of those edges is a circumference or an ellipse, which are the

only possible planar closed curve in the set of types of faces considered for the models

in this method.

Also not planar closed edges could occur in a BRep, but we do not worry about

them, because the tests demonstrated that considering only the BRep natural vertices

and the new vertices put on closed circular or elliptical edges are sufficient to obtain the

required results. The proposed method does not treat REs without original vertices and

provided with only closed non planar edges, because in this case it is unable to properly
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Figure 3.2: A BRep constituted by the cylindrical face (in blue) and two conical base faces.

This model is an example not treated by the proposed approach.

add vertices on the edges (in Figure 3.2 there is an example of a not considered case).

The new vertices are assigned in the following way.

Let Aj be a RE with a closed planar edge. The parametric form of the lying curve of

the edge can be easily obtained by the specific functions provided by the development

environment, that will be described in details hereinafter. In this way we can consider

the image of the application γ : [t0, t1] → R3 to be an arc of regular curve, with I =

[t0, t1] its parametric interval of definition, γ(t) = (γ1(t), γ2(t), γ3(t)), γi : [t0, t1] →

R for i = 1, 2, 3. As this must represent a closed curve, γ(t0) = γ(t1). Let V′j be the set

of vertices provided by the BRep. The two new vertices added to V′j have coordinates:(
γ1(t0), γ2(t0), γ3(t0)

)
,
(
γ1

( t1 − t0
2

)
, γ2

( t1 − t0
2

)
, γ3

( t1 − t0
2

))
.

Two new vertices must be added to the set of vertices contributing to the centroid

computation for a RE whenever a closed edge occurs.

As for open curved edges, both planar and not planar, even if the BRep provides

for them two vertices (the starting point and the ending point) and so the set of vertices

of that RE is surely not void, we add a new vertex in the exact middle of the arc. This

operation is necessary for the geometric comparison of the REs in the final step of this

proposed method, as we will see hereinafter.

So if the RE Aj has a open curved edges, considering its host open arc of regular
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Figure 3.3: a) An example of RE with two closed circular edges; b) the cylindrical faces of

the RE have two open circular edges. The vertices highlighted in red have been added for the

centroid computation, those in green are original vertices of the BRep.

curve γ : [t0, t1]→ R3, γ(t0) 6= γ(t1), the new vertex added to V′j has coordinates:(
γ1

( t1 − t0
2

)
, γ2

( t1 − t0
2

)
, γ3

( t1 − t0
2

))
.

A new vertex must be added to the set of vertices contributing to the centroid com-

putation for a RE whenever a curved edge occurs.

Figure 3.3 shows two examples of vertex adding on curved planar edges.

Summarizing, let V′j be the set of vertices of Aj coming directly from the BRep and

V′′j the set of vertices added on curved closed planar edges and on curved open edges

of Aj , then the set Vj containing the vertices used for the centroid computation is:

Vj = V′j ∪ V′′j

As the REs are congruent with each other, at the end of this analysis |Vj | = |Vk|

for every j, k ∈ {0, . . . , n− 1}.

3.2 Grouping surfaces

If we consider the RE as a whole entity (precisely it is a set of more face entities itself)

we could say the RE is adjacent to other faces of the examined BRep. In this method
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Figure 3.4: a) The five cylindrical faces lying of the lateral faces of the prism constitute a

rotational symmetric arrangements, but the regularity is not detected because each RE lies on a

different surface; b) The two pockets are related by reflection but they are associated to different

GSs.

we decide to group the REs by the lying surfaces of the faces they are adjacent to: if

the RE Ai is adjacent to the face F of the BRep and the host surface of F is S, we

associate Ai to the surface S. In this context, S is called a grouping surface (it will

be briefly noted by GS). In this way, we will find a set of GSs and each of them is

associated to a set of REs. Intersecting the set of REs associated to a GS with the set of

REs associated to another GS we could find a not void set, as a RE Ai could be adjacent

to different faces with different host surfaces, associating it to more than one GS. At

the end of this procedure of association, we will find a list of GSs S0, . . . , Sp−1, p ≥ 1,

with respectively associated LRE0, . . . , LREp−1 lists of the REs, where LREj is the

list of REs adjacent to a face with Sj as host surface.

The proposed approach aims to detect symmetric arrangements of REs lying on the

same GS. This restriction could prevent to detect symmetric arrangements like those

represented in Figure 3.4: the first image represents a rotation, the second one a re-

flection, but both are not detected because the REs lie on different GS. However, this
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Figure 3.5: A symmetric arrangement of REs (each RE is composed by a cylindrical face and

a planar base face): each of them lies of a different face but with same lying surface.

procedure is adopted to do an initial selection of the REs provided as input and to make

faster the detection, as the field of searching is reduced if compared to the whole initial

set of REs of the most probable arrangements.

Observation 3.2.1. Notice that a symmetric arrangements like those represented in

Figure 3.5 is included in the set of the symmetric arrangements considered by this al-

gorithm.

Denoting as S the list of all GSs deriving from the REs’ adjacency analysis, we

order S by decreasing ordering respect to the number of REs in the list associated to

the GS. This is done because the most the number of REs on a GS is high and the most

there is probability to find numerous and meaningful symmetric arrangements.

3.2.1 Adjacency matrices at constant distance

Let S be a GS, consider the REs in the list associated to it. Observing that a symmetric

regularity exists if and only if the distance between two centroids of two consecutive

REs involved in the configuration is constant, another selection level can be applied
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inside S to the REs . In formulas, the constant distance between two consecutive cen-

troids can be formalized as follows: let {A0, . . . ,Aq−1} be the set of REs constituting

a symmetric arrangement, {C0, . . . , Cq−1} the set of the respective centroids, then the

Euclidean distance d(Ci, Cj) = α, with α > 0, i, j ∈ {0, . . . , q − 1} such that i 6= j.

The idea is to store, for every value of distance d occurred, information about cen-

troids being distant at that value d in a “adjacency matrix”.

Definition 3.2.2. Let P0, . . . , Pn−1 a set of n points in R3 and d a real number, d > 0.

We call adjacency matrix at constant distance d (or simply d-adjacency matrix) of the

points P0, . . . , Pn−1 the n× n matrix Md such that:

Md(i, j) =


1 if d(Pi, Pj) = d

0 if d(Pi, Pj) 6= d,

(3.3)

where Md(i, j) denotes the entry of Md at position (i, j), i, j ∈ {0, . . . , n− 1}.

Observation 3.2.3. Since d(Pi, Pj) = d(Pj , Pi) then Md(i, j) = Md(j, i). In other

words, Md is a symmetric matrix.

Observe that Md(i, i) = 0 for every i ∈ {0, . . . , n−1}, so Md is a square matrix whose

diagonal elements are all equal to 0.

A d-adjacency matrix can be viewed as a network of points in R3 each of them

connected to one or more points of the network by a straight arc of length d.

So this step of the algorithm consists on the creation, for every GS found, of a list

of adjacency matrices at constant distance of the centroids C0, . . . , Cn−1, one for each

d occurrence. For each of these matrices the number of occurrences of the distance d

between the involved points is computed: this attribute for each matrix is called nOccur.

Its value is computed by summing the entries in the inferior triangle or indifferently in

the superior triangle of the matrix.
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The adjacency matrices construction is mainly made to find “long” patterns of REs,

which means that these constructed data will be used to find paths of equidistant cen-

troids with a number of involved centroids as high as possible. Paths of two centroids

are banal and not significant. For these reasons the d-adjacency matrices with nOc-

cur= 1 are deleted from the list of adjacency matrices to examine.

Another important observation, confirmed by the various tests performed in the

application context, is that proximity between REs has to be considered as a relevant

factor to indicate possible pattern candidates. when REs are close to each other they are

more probable to be in a verified pattern. For this reason the remaining elements in the

list are reordered by creasing order respect to the repeated distance of d.

3.2.2 Centroids classification

In the next section we will describe the proposed algorithm part dedicated to find all the

possible sequences of centroids (what we will call paths) to give an outline of all the

possible existing symmetric arrangements of REs.

This discussion about the centroids classification is preliminary for the path detec-

tion algorithm.

At a fixed d-adjacency matrix, we want to classify a centroid considering the num-

ber of centroids indicated at distance d from it in the matrix. We call branch of a

centroid Cj a centroid Ck, k 6= j, such that Md(i, j) = 1. We will also say that Cj

and Ck are connected at distance d. To classify Cj it is sufficient to extract information

from the matrix, by observing the row corresponding to Cj : summing the 1 entries in

that row we can obtain the number of branches of Cj .

Denote the resulting number of branches as sj , then:

• if sj = 1, Cj is called extreme point;

• if sj = 2, Cj is called simple point;
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Figure 3.6: a) the graphic representation of the connections at distance d among the centroids

C0, . . . , C9; b) the corresponding d-adjacency matrix.

• if sj > 2, Cj is called multibranch point.

In Figure 3.6 there is a simple example situation: Figure 3.6a) graphically represents

the relations among centroids C0, . . . , C9, signed in red, and the arcs connecting them

represent the constant distance d from a centroid to another one; in Figure 3.6b) there is

the associated d-adjacency matrix. In the example C0, C3, C4, C6, C8, C9 are extreme

points, C1, C2 are simple points, C5 is a multibranch point, while C7 is not classified

in this adjacency matrix because there not exist a centroid Cj , j 6= 7, on the current GS

such that the Euclidean distance d(C7, Cj) = d.

3.3 Paths of centroids

In this section we will describe the path detection algorithm which carries out the pro-

cess of detecting all the possible sequences of centroids whose REs could possibly

represent a symmetric arrangement. These sequences of centroids are made of at least
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three centroids satisfying specific geometric conditions.

In this proposed method we decide to focus the attention on symmetric arrange-

ments of REs whose centroids lie all on a line or on a circumference, so on two planar

curves.

Definition 3.3.1. Let C = {C0, . . . , Cn−1} be a set of centroids of REs. We call path of

length l, with l ≥ 3, an ordered sequence of l centroids (Cj0 , . . . , Cjl−1
), with Cjh ∈ C

for h = 0, . . . , l − 1, such that:

• Cj0 , . . . , Cjl−1
all lie on the same line (path of type “line”)

or

• Cj0 , . . . , Cjl−1
all lie on the same circumference (path of type “circumference”)

and such that d(Cjh , Cjh+1
) = d, with d > 0 and for h ∈ {0, . . . , l − 2}.

The line or the circumference containing all centroids of the path is called curve

associated to the path.

The following described steps aim to find all the existing maximal paths of centroids

given as input, which is to say that we want to find all the paths (Cj0 , . . . , Cjl−1
) such

that there cannot exist a path (Ck0 , . . . , Ckp−1) with p > l such that {Cj0 , . . . , Cjl−1
} ⊂

{Ck0 , . . . , Ckp−1}.

Conducting the detection within the network built by an adjacency matrix (and so

at a fixed distance d) we can avoid to verify during the process the constant distance

between the centroids, and so focusing the searching on the detection of those centroids

satisfying the required geometric equations. The process will be described can be seen

as an “expansion process” in a network of centroids.
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3.3.1 Path building

A path is built step by step, by first choosing an initial seed set of three centroids

(seed1, seed2, seed3) and, once the type of the path is going to be constructed has

been established , by adding every time a new centroid to the current path if it possible.

If the three initial points are aligned it will be a path of type line, otherwise it will be

a path of type circumference. In both cases, the first time the attempt of expansion is

done in the “seed1 to seed2” direction, when the expansion towards that direction is no

more possible is made a second expansion attempt in the “seed2 to seed1” direction.

Let discuss when a new point can be added to the current path and so when the

expansion is possible. Suppose the current path in expansion to be (Cj0 , . . . , Cjl−1
),

with l > 2, the associated curve to be C, and suppose we are attempting to expand in

the “Cj0 to Cj1” direction. The expansion in that direction is possible if and only if a

branch of Cjl−1
lying on C and different from Cjl−2

there exist. If such a point does not

exist the expansion in that direction is no more possible.

The expansion from a seed set ends when the maximum expansion is reached in

both the cited directions. Then the new found path is added to a list of paths associated

to the current adjacency matrix, hanging on the next verification step (described in the

next section).

3.3.2 The starting point choice

The seed points determine the nature of the path that is to be built, as they allow to

establish the equations of the associated curve C.

The choice of the starting point (seed1) is an important issue that must be discussed.

As just stated, this path detection algorithm aims to detect all the existing paths of

centroids in the given set. If we follow the strategy of considering every centroid as a

starting point for the path creation, we can easily see that many unnecessary operations
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Figure 3.7: A set of centroids at a constant distance: C1, C2, C3, C4, C5, C6 lie on the circum-

ference (in blue) and constitute a path, while C0 does not lie on the circumference.

are done. Considering Figure 3.7 it is clear that assuming as a starting point every cen-

troids leads to find many times the same path. In the example, moving towards the “C1

to C2” direction, taking C1, C2, C3, C4, C5 as starting point for the expansion process

one always obtain the same path of type circumference (C1, C2, C3, C4, C5, C6). So,

we must exclude some centroids from being a starting point.

Furthermore, some starting points could lead to many different paths: this is the

case of the multibranch points and of the simple points. To find all the existing paths

it is necessary to explore every branch of the starting point (seed1) and so to consider

every branch as second point (seed2).

In the same way, independently from the starting point class, a second point could

have more than one branch and we must consider every possible third point (seed3) not

to prevent ourselves from finding every possible path.

Once the seed set of three elements is established, it is necessary to verify that the

three centroids are not contained in an already existing path in the list of already found

paths. If such a path has already been created the seed set is discarded. Otherwise, the

seed set fixes the type of the path and the associated curve, expecting the algorithm to

expand the seed set along the curve as much as possible.
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To ensure the covering of all the existing paths in the network of centroids while

avoiding the re-identification of the same, a set of supporting lists of centroids are cre-

ated and updated each time a new path is found. Let SP be the set of the simple points,

MBP the set of the multibranch points in a given d-adjacency matrix. Every time a new

path pass through a simple or a multibranch point the corresponding list must updated

deleting the element. A list of extreme points EP is created exclusively to save cen-

troids of that type and no update of it is necessary. Furthermore, for every new path

found (Cj0 , . . . , Cjl−1
) if Cj1 and/or Cjl−2

are not multibranch points and respectively

Cj0 and/or Cjl−1
are not extreme points, Cj1 and/or Cjl−2

are added to a list called list

of penultimate points while Cj0 and/or Cjl−1
are added to a list called list of last points.

Cj0 is the “last point” of Cj1 , while Cjl−1
is the Cjl−2

one.

Observation 3.3.2. Notice that we will never choose an extreme point as a starting

point: choosing only simple and multibranch points as starting point ensure to find a

path every time we start an expansion process, while choosing an extreme point we

cannot guarantee to find a path if it is connected to another extreme point because the

seed set would not be defined (as in Figure 3.8)

Here follows the sequence of starting points the algorithm chooses to optimize the

number of attempts of expansion process from seed sets of centroids.

1. The first step of the path detection algorithm starts by considering all the multi-

branch points as starting point for the expansion process, if MBP is not void.

Suppose MBP not void, let C0 be a multibranch point, {C0,0, . . . , C0,q−1} be the

set of branches of C0, with q ≥ 3 (because C0 has at least three branches).

The algorithm need to find at least a path to fulfill the next steps. So, if MBP is

void, we check if SP is not void. If it is not we take the first simple point of the

list as starting point.
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Figure 3.8: The graphic representation of the d-adjacency matrix relations between the cen-

troids C0, C1, C2, C3, C4, C5, C6, C7: they are all extreme points.

If also SP is void it means that all the centroids involved in the current adjacency

matrix are extreme points (like in Figure 3.8) and so it is impossible to find a path

of centroids in this network of points. The current d-adjacency matrix cannot

lead to a result in terms of paths.

2. Suppose that at least a path has been found, so exclude the case MBP = ∅ and

SP = ∅.

The second step of the path detection algorithm consists on considering all the

centroids in the list of penultimate points as starting points. Let Cpen be a penul-

timate point and Clast the respective last point: we force the expansion direction,

imposing expansion attempt in the “Cpen to Clast” direction.

3. Once all the penultimate points have been considered as starting point and the

respective list is void, we take the first simple point available in the list dedicated

to the simple points not yet in a path, if that list is not void. Supposing that the

list of available simple points is not void, if new paths are built and the list of

penultimate points is now no more void, we go back to the Point 2. The process

ends when both the list of penultimate points (and so the last points one) and the
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list of simple points not yet in a path are void.

4. The last level of starting points choice consists of a final check of some multi-

branch points: they are the multibranch points lying on an already found path, let

it be (Cj0 , . . . , Cjl−1
), where there exist i ∈ {j0, . . . , jl−1} such that Ci is not a

multibranch point.

Let denote as MBPC the set of the multibranch points satisfying the just cited

characteristics, let C0 ∈ MBPC, let {B0, . . . , Br−1} be the set of the branches

of C0. We check if there already exists a path in the list of found paths such that it

contains {Bj , C0, Bk}, for every j, k ∈ {0, . . . , r − 1}, with j 6= k. If the check

gives negative verdict and there is not a path containing {Bj , C0, Bk} for some j

and k, a new expansion process must start from the seed set (Bj , C0, Bk).

At the end of all these expansion processes all the existing paths in the network of

centroids deriving from a fixed adjacency matrix are found.

Observation 3.3.3. The path detection algorithm considers an early interruption in

case of a specific situation. If {C0, . . . , Cn−1} is the set of n centroids referred to

the REs associated to a GS and during the algorithm a path of length n or n − 1 is

found, the geometric verification process of REs is immediately applied (described in

next section), without waiting for the natural end of the path detection algorithm. This

exception is applied because a path of maximum length (or almost maximum length, as

the exception occurs also in case of path of length n − 1) could be in general a strong

signal as it represents a path involving the centroids of all the REs on the current GS.

It let us hope to find an entire and compact symmetric arrangement on that GS.

Observation 3.3.4. The choice of using penultimate points as starting point forcing

the expansion direction towards the respective last point follows from the intuition that,

when a path cannot no more expand itself, this may be a signal of the beginning of
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new ones, one for each extremity of the interrupted path. New paths rising from the

extremity of an old path exist only if there are other centroids connected (by the d-

adjacency matrix information) to the extremity centroid of the old path (what we called

“last” point), and so if the centroid at the extremity is not an extreme point. Moreover,

multibranch points are already taken as starting points, so we exclude a penultimate

point to be a multibranch point.

3.3.3 An example of paths detection

Suppose that a fixed d-adjacency matrix in a fixed GS gave the situation represented in

the following figure:

The centroids are identified by an index from 0 to 18 and the connection segment

between two centroids represents the constant distance d.

Counting the branches of each centroid, we see that

• centroids 0, 9, 13, 18 are extreme points;

• centroids 4, 5, 6, 7, 8, 14, 15, 16, 17 are simple points;

• centroids 1, 2, 3, 11 are multibranch points.

Suppose to apply the path detection algorithm on this d-adjacency matrix. We will

highlight in red the new found paths with the current starting point considered, in blue

the penultimate points not yet used, in green the paths found in the previous steps. At

each step, suppose to delete a centroid from the corresponding set when it is used as
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starting point and to update the set of simple points whenever a path containing it is

created, as arranged by the path detection algorithm.

1. Consider the first available multibranch point, which is the centroid 1. In the

following figure we have represented the found paths and the new penultimate

points:

Now consider the next available multibranch point, which is centroid 2:

At this stage multibranch centroids 3 and 11 are considered as well but do not

return any new path.

2. Once all multibranch points have been studied, we consider the first available

penultimate point, which is centroid 5. Moving towards the respective last point

(centroid 6) we find the new path of type circumference highlighted in the fol-

lowing figure, which carries also a new penultimate point:
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The penultimate point 10 does not return any new path.

Using penultimate point 6 we find a new path of type line, which gives back

a new penultimate point:

However, the last found penultimate point 7 does not lead to a new path.

3. Since the set of penultimate points is currently void, we take as starting point the

first available simple point in the list of simple points not yet belonging to a

path. It is centroid 14 and it returns a path of type circumference of length 6:

None new penultimate point is found. The set of penultimate points and the



The proposed approach 69

set of simple points not yet in a path are now void.

4. The final verification of the multibranch points let us find two new paths from the

branch exiting from centroids 3 and 11:

The process ends. The final situation is here represented:

In this example all the existing paths of centroids are therefore detected following

the steps of the path detection algorithm proposed.

3.4 Patterns of Repeated Entity

In the previous section we have discussed how to detect all the paths of centroids of

REs existing in a network of centroids. The network is built following the relations

contained in a d-adjacency matrix.

In this section we intend to exploit the identified paths to verify if a regular ar-

rangement of centroids can be translated in a regular arrangement of the corresponding

repeated entities. A path of centroids gives an outline of the REs placement, so, ver-
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ifying the correct orientation only relatively to the REs whose centroids are regularly

organized, we avoid to examine all the REs associated to a GS. This approach optimizes

the number of controls.

This phase of the algorithm has been developed for REs containing exclusively

planar and cylindrical faces.

3.4.1 Patterns

Now we give the list of the symmetric arrangements of REs the proposed method is

able to detect, classifying them by the type of the planar curve the REs’ centroids lie

on: line or circumference.

The symmetric arrangement types are defined through the translation and reflection

notions, that have been introduced in Section 1.1. We will use the same notations of the

section in which they are defined.

Let {A0, . . . ,Aq−1} be a set of REs and {C0, . . . , Cq−1} be the set of the respective

centroids, q ≥ 2. Suppose (C0, . . . , Cq−1) to be a path.

If (C0, . . . , Cq−1) is a path of type line, the REs in {A0, . . . ,Aq−1} could constitute

a pattern of type:

• linear translational.

• reflectional. This type of pattern can exist only if q = 2.

If (C0, . . . , Cq−1) is a path of type circumference, the REs in {A0, . . . ,Aq−1}

could constitute a pattern of type:

• circular translational.

In this step of the approach we will fully exploit the vertices of the REs. The set of

vertices of the REs checked during this phase does not correspond to the set of vertices

used for the centroid computation (see Subsection 3.1.2): let Vj the set of vertices used
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Figure 3.9: The representation of an example of RE with four cylindrical faces: C0 and C1 have

two closed planar base edges, C3 has one of them, while C2 does not have closed planar base

edges.

to compute the centroid Cj of the RE Aj , then the set Ṽj of the vertices of Aj we will

use in this section is defined by Ṽj = Vj \Hj , where Hj is the set of the vertices of Aj

added on closed curved edges of Aj for the centroid computation.

We justify the exclusion of these vertices from the set of vertices by considering

that the two points added on a closed curve edge of a RE and the ones added to the cor-

responding closed curve edge of another RE are not granted to be inserted in the same

position. Indeed, to determine these points we used the lying curve parametrization and

different ways of designing two repeated entities could lead to different parametriza-

tions.

In the next subsection we will suppose Ṽj = {Vj,0, . . . , Vj,pj−1} for j = 0, . . . , q−

1. We have pj = pk = p for k = 0, . . . , q − 1, p > 1, as the REs are congruent by

definition.

In the next subsections we will suppose Fp
j and Fc

j to be respectively the set of planar

faces and the set of cylindrical faces of Aj , for j = 0, . . . , q−1. The congruency of the

REs implies that |Fp
j | = |F

p
k| and |Fc

j | = |Fc
k| for j, k = 0, . . . , q − 1.
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Observation 3.4.1. Cutting a cylindrical face with a planar face (with lying plane not

parallel to the axis of the cylinder), we can obtain two types of closed planar edges

corresponding to the base edges of the cylindrical face. We obtain a closed edge with

a circumference as hosting curve if the plane has normal corresponding to the axis

direction of the cylinder, and the circumference has center lying oh the cylinder axis.

Otherwise, we obtain a closed edge with an ellipse as hosting curve with center lying

oh the cylinder axis.

A cylindrical face can have none, one or two planar closed base edges (see Figure

3.9).

3.4.2 Linear translational pattern

Suppose (C0, . . . , Cq−1) be a path of type line. To conclude that the set of REs

{A0, . . . ,Aq−1} is a linear translational pattern it is necessary to examine the REs in

pairs.

Consider for a while two REs Ai,Ai+1 with consecutive centroids Ci, Ci+1 in the

given path , i ∈ {0, . . . , q − 2}. To understand if the relation between the two REs is a

translation, a check of faces and vertices is provided.

Let Ci = (xCi , yCi , zCi) and Ci+1 = (xCi+1 , yCi+1 , zCi+1). Then, the candidate

translational vector is v = (xv, yv, zv) computed as

(xCi+1 − xCi , yCi+1 − yCi , zCi+1 − zCi). (3.4)

Observe that, as (C0, . . . , Cq−1) is a path of type line, the candidate translational

vector v is the same for every pair of consecutive REs.

To conclude that Ai,Ai+1 are related by translation by the candidate translational

vector v we provide two levels of check, the first referred to the vertices, the second ex-

ploits the surface information of the faces. The given REs are congruent by definition

and in some cases the correspondence of the vertices would be sufficient to establish is
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Figure 3.10: The REs are highlighted with different colors respect the remainder BRep: a)

Ai,Ai+1 are related by translation and a vertices check completely determines the faces posi-

tion; b) Ai,Ai+1 are not related by translation, even if an only vertices check gives a positive

answer.

the two REs are correlated by translation, but there are cases in which also the corre-

spondence of the faces is necessary, especially when there are symmetries in the set of

vertices. For example see Figure 3.10: in the situation represented in a) the vertex check

allows to conclude that it is a translation, while in b) the vertex check gives a positive

answer but it is not a translation, so a check of the face arrangement is necessary.

Denote the origin of R3 as O.

1. Vertex check. We check if for j = 0, . . . , p − 1 there exist k ∈ {0, . . . , p − 1}

such that Vi+1,k has coordinates (xi,j + xv, yi,j + yv, zi,j + zv), which is to say

−−−−−→
OVi+1,k = Tv(

−−−→
OVi,j).

If the condition is satisfied, we pass to the next step.

2. Face check. Different check are provided for planar faces and for cylindrical

faces.

• Planar faces. For each planar face we compare the normals. We simply

verify if for each planar face Fk ∈ Fp
i there exist a planar face Fh ∈ Fp

i+1
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such that nk = nh, where nk, nh are the normal vectors of the planes cor-

responding respectively to Fk, Fh.

• Cylindrical faces. For each cylindrical face in Ai such that it has at least a

closed planar base edge we check if there exist a corresponding translated

cylindrical face in Ai+1 by exploiting axis and edges information.

Let Fk ∈ Fc
i , Ck the lying cylinder, ak the direction vector of the axis of Ck,

rk its radius, Ok its origin, Wk the set of the circumferences corresponding

to its closed planar base edges, Zk the set of the ellipses corresponding to

its closed planar base edges (information provided by the adopted CAD

system, see also Subsection 3.1.1), such that |Wk|+ |Zk| > 0.

We select the set of cylindrical faces

Ci+1 = {Fh ∈ Fc
i+1 : rh = rk, |Wh| = |Wk|, |Zh| = |Zk|},

where rh, Wh, Zh respectively denote the radius, the set of circumferences

corresponding to the closed planar base edges, the set of ellipses corre-

sponding to the closed planar base edges of the cylindrical face Fh.

We select from Ci+1 the set of cylindrical faces with axis corresponding

to the line computed in the following way. Let G the point whose coordi-

nates are defined by
−−→
OG = Tv(

−−→
OOk), it should be on the axis line of the

candidate cylinder. The cylindrical face we are looking for has axis corre-

sponding to the line computed by considering the line passing through G

with direction ak, so we select from in Ci+1 the cylindrical faces satisfying

this condition.

When a face Fh satisfying these conditions is found, we finally examine

the base edges correspondence. For each circumference in Wk with center

Cck, we check if there exist in Wh a circumference with center Cch such that
−−→
OCch = Tv(

−−→
OCck); for each ellipse in Zk with center Cek, we check if there
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exist in Zh an ellipse with center such that
−−→
OCeh = Tv(

−−→
OCek). Furthermore,

for the ellipses we have to check also the major and minor radius equality

and the correct orientation of the minor and major axis.

If it exists, only one cylindrical face Fh satisfies all the cited conditions and

so is the corresponding translated of the cylindrical face Fk.

If both vertex and face checks give a positive answer, we can state that Ai and Ai+1

are related by a translation with translational vector v. In formula

Ai+1 = Tv(Ai)

Finally, we can say that the set of REs {A0, . . . ,Aq−1} constitute a linear transla-

tional pattern if Ai and Ai+1 are related by a translational function with the translational

vector v, for i = 0, . . . , q − 2.

3.4.3 Reflectional pattern

Let q = 2. To verify if two REs A0 and A1 are related by reflection we apply a vertex

and a face check scheme, analogously as the translation on line case.

Let C0 = (xC0 , yC0 , zC0) and C1 = (xC1 , yC1 , zC1). Consider the normalized

vector nm = (xnm , ynm , znm) defined by(
xC0 − xC1

α
,
yC0 − yC1

α
,
zC0 − zC1

α

)
where α =

√
(xC0 − xC1)2 + (yC0 − yC1)2 + (yC1 , zC1)2, and the point

MC0,C1 =

(
xC0 + xC1

2
,
yC0 + yC1

2
,
zC0 + zC1

2

)
midpoint of C0, C1. We compute the plane passing through MC0,C1 and with nm as

normal vector: it is the candidate reflection plane of the REs A0 and A1 and we denote

it as Pr.

Here follows the description of check of the vertices and of the faces.
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1. Vertex check. For each vertex V0,k, k ∈ {0, . . . , p − 1}, we must check if there

exist h ∈ {0, . . . , p− 1} such that V1,h is the reflected of V0,k by the plane Pr, in

formula
−−−→
OV1,h = RPr(

−−−→
OV0,k).

If the check of all the vertices in Ṽ0 gives a positive answer, the face check is

performed.

2. Face check. As for the linear translational pattern case, we discuss how to treat

planar and cylindrical faces.

• Planar faces.

We simply verify if for each planar face Fk ∈ Fp
0 there exist a planar face

Fh ∈ Fp
1 such that

nh = RPr(nk),

where nk, nh are the normal vectors of the planes corresponding respec-

tively to Fk, Fh.

• Cylindrical faces. For each cylindrical face in A0 such that it has at least a

closed planar base edge, the following check must be done. Consider the

same notations used for cylindrical faces in the translational pattern descrip-

tion. Let Fk be a a cylindrical face in Fc
0 such that |Wk|+ |Zk| > 0 and let

C1 = {Fh ∈ Fc
1 : rh = rk, |Wh| = |Wk|, |Zh| = |Zk|}. Then we consider

the reflection of the point Ok by the plane Pr, we denote it as G and it is

defined by
−−→
OG = RPr(

−−→
OOk). We look for a cylindrical face in C1 such

that its axis line corresponds to the line passing through G and with ak as

direction vector.

Then we examine the closed planar base edges reflection correspondence.

If a face Fh satisfying the above conditions is found, for each circumference
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in Wk with center Cck, we check if there exist in Wh a circumference with

center corresponding to Cch, a point such that
−−→
OCch = RPr(

−−→
OCck), while for

each ellipse in Zk with center Cek we check if there exist in Zh an ellipse

with center corresponding toCeh, a point such that
−−→
OCeh = RPr(

−−→
OCek). Fur-

thermore, for each ellipse in Zk with vmajor and vminor as direction vector

of respectively the major and the minor ellipse axis, the corresponding el-

lipse in Fh must haveRπ(vmajor) andRπ(vminor) respectively as direction

vector of respectively the major and the minor ellipse axis.

If it exists, only one cylindrical face Fh satisfies all the cited conditions and

so is the corresponding reflected of the cylindrical face Fk.

If both vertex and face check give a positive answer, we can state that A0 and A1

are related by a reflectional pattern, with reflection plane Pr. In formula

A1 = Rπ(A0)

3.4.4 Circular translational pattern

Suppose (C0, . . . , Cq−1) to be a path of centroids of type circumference. To conclude

that the set of REs {A0, . . . ,Aq−1} is a circular translational pattern it is necessary to

examine the REs in pairs, analogously to the translational pattern on line case.

The difference in this situation is that the candidate translational vector changes

direction for each pair of consecutive REs, while the euclidean norm of the vector is

a constant value. Let i, j ∈ {0, . . . , q − 2} and let Ai,Ai+1 and Aj ,Aj+1 be two

pairs of consecutive REs. Then the candidate translational vector of the pair Ai,Ai+1,

noted by vi, is computed as (xCi+1 − xCi , yCi+1 − yCi , zCi+1) − zCi , and analogously

the candidate translational vector of the pair Aj ,Aj+1, noted by vj , is computed as

(xCj+1 − xCj , yCj+1 − yCj , zCj+1 − zCj ) (see Formula 3.4). Denoting the euclidean

norm of a vector v ∈ R3 as ‖v‖, we have ‖vi‖ = ‖vj‖ = d, where d is the repeated
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distance between centroids involved in the path of type circumference.

To conclude that the set of REs {A0, . . . ,Aq−1} constitute a circular translational

pattern we must verify that for i = 0, . . . , q − 2 the REs Ai and Ai+1 are related by

translational function with the translational vector vi.

3.5 The patterns detection algorithm

In this section we neatly illustrate the sequence of steps of the pattern detection algo-

rithm. We provided an outline in the previous sections and the path detection algorithm

is recalled in the main algorithm, constituting a fundamental part of the process.

This is the pseudo-code that summarizes the entire algorithm:

Input: RE_list, list of REs

Output: Pattern_list, list of patterns of REs

Pattern_list = empty

Pattern_length2_list = empty

GS_list = empty

for each (R in RE_list) do

\\ Building and managing of REs information

V = VERTICES_ADDED_TO_CURVED_EDGES(R)

C(R) = CENTROID_COMPUTATION(vertices(R)∪ V)

\\ Creation of GSs

GS = GET_GS(R)

GS_list = GS_list ∪ GS

end for

THIN_OUT_AND_ORDERING(GS_list)

for each (G in GS_list) do

if List_of_REs(G).count > 2 then
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List_adjacency_matrices = COMPUTE_ADJACENCY_MATRICES (G)

THIN_OUT_AND_ORDERING(List_adjacency_matrices)

for each (M in List_adjacency_matrices) do

List_of_paths = FIND_ALL_PATHS (M)

ORDERING(List_of_paths)

for each (P in List_of_paths) do

\\ Verification of the identified paths

VERIFY_PATTERNS_AND_UPDATE_LIST_OF_PATTERNS(

P , Pattern_list, Pattern_list_length2)

UPDATE_OTHER_DATA(

List_of_paths,List_adjacency_matrices, GS_list, Pattern_list_length2)

Remove P from List_of_paths

end for

RemoveM from GS_list

end for

Remove G from List_adjacency_matrices

end if

RemoveM from GS_list

end for

\\ Final attempt to find patterns of length 2

ARRANGEMENTS_IN_PATTERNS_OF_LENGTH2 (

Pattern_list_length2, GS_list, Pattern_list)

return Pattern_list

In details, the operations implemented to reach the detection of symmetric arrange-

ments of REs are the followings.
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1. Acquisition of faces of REs. The REs are acquired as input by selecting lists of

faces and each list of faces correspond to a RE.

2. Building and managing of REs information. The input faces and the respective

vertices are stored, the necessary vertices for curved (open and closed) edges are

added, the centroids are computed.

3. Creation of GSs. For each RE, the set of surfaces corresponding to a face adjacent

to the RE is extracted. For every surface of this set we verify if the corresponding

GS has already been created in a previous step or not: if the GS exists we add

the current RE to the REs list of the GS, otherwise the new GS is created and the

current RE is added as first element of the corresponding associated REs list.

4. Thin out and ordering of GSs list. All the GS with associated a list of REs con-

taining only one element are deleted from the list of GSs. Then, the remaining

GSs are ordered by descending criteria respect to the number of elements in the

associated REs list.

5. Examination of GSs list and patterns verification. Then, taking the first available

GS from the list of GSs, the operations described in details in Subsection 3.5.1

are applied to it.

The current GS is then deleted from the list of GSs.

6. Final attempt to find patterns of length 2. At the end of GSs analysis there could

remain a set of initially selected REs not yet in a detected symmetric arrange-

ments of length at least 3. For these REs we decided to associate them, if it

exists, to an already found symmetric arrangement of length 2 containing them

(these patterns are found “by chance” while we were looking for longer patterns,

as we will explain below). If such a pattern of length 2 does not exist, a possi-

bility (not implemented yet) is to try to couple the remaining REs belonging to
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the same GS list two by two, verifying if they are related by a regular arrange-

ments (translation, reflection, rotation), starting the coupling attempting from the

nearest couples of REs.

3.5.1 Grouping surface examination

More specifically, the following operations are considered for each GS such that the

number of REs in the associated list in greater than 2:

1. Creation of the list of d-adjacency matrices. Every combination of centroids

distance is computed: when the corresponding d-adjacency matrix already exists,

it is updated, otherwise a new d-adjacency matrix is created.

2. Thin out and ordering of the list of d-adjacency matrices . All the d-adjacency

matrices with nOccur value equals to 1 are deleted from the list of d-adjacency

matrices. Then, the remaining matrices are ordered by creasing value of d.

3. Getting patterns of REs from d-adjacency matrices. Considering every time the

first available d-adjacency matrix from the list of remaining d-adjacency matri-

ces, the following operations are performed for each d-adjacency matrix.

- Path detection algorithm application. The algorithm described in 3.3 is

executed on the current d-adjacency matrix network of centroids.

- Results of the path detection algorithm evaluation. If the applied algorithm

gives back a void list of detected paths, we consider the next d-adjacency

matrix, if there are available matrices. If no other matrices are available for

this GS, the examination of the current GS ends.

If the list of detected paths is not void, such a list is ordered by descend-

ing ordering respect to the path length. Furthermore, we choose to give

precedence to the paths of type line of length 3 respect to the paths of type
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Figure 3.11: “Grid” case: we consider the path corresponding to the red line more significant

than the path of type circumference in blue.

circumference of length 4 (see Observation 3.5.1). Then, the first avail-

able path of centroids is examined to verify if it is effectively a symmetric

arrangements of the respective REs (more details are given in Subsection

3.5.2) and it is deleted from the list of found paths.

This continues until the list of paths is void.

4. Current d-adjacency matrix deleting. The just treated matrix if deleted from the

list of the adjacency matrices of the current GS.

If the number of REs in the list associated to the GS is 2, the path detection algo-

rithm cannot be applied to the set of centroids, but such a GS indicates that the two REs

associated to the GS lie on the same surface and so they can be considered in the final

attempt of finding symmetric arrangements of length 2.

Observation 3.5.1. The choice of giving precedence to paths of type line of length 3

respect to paths of type circumference of length 4 derives from the application context.

As an example see Figure 4.2.2: we consider a path of type line of length l = 3 more

significant respect to a path of type circumference of length l = 4 in this case.
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It is not a restrictive choice: intersecting path of type line of length 3 and of type

circumference of length 4 are common especially in grid cases. Also in general we have

found valid output results in the performed tests.

3.5.2 Verifying patterns

The type of path of centroids to verify determines the type of candidate patterns it could

lead to: if the path is of type line we will look for linear translational pattern, if the path

is of type circumference we will look for a circular translational pattern.

When a path of centroids is verified, the REs are compared in pairs of two. The com-

parison could give a negative answer at any time during the process. Let (C0, . . . , Cq−1)

the path of centroids to verify, let {A0, . . . ,Aq−1} be the set of the corresponding REs.

Suppose the that the algorithm gives the first negative answer while comparing Ai and

Ai+1, with i ∈ {0, . . . , q − 3}, so before the end of the path. If i = 0 it means that

the first interruption occurred comparing the first to REs, then no results are stored. If

i > 0, we consider the pattern built up to the interruption and we store the symmetric

arrangement composed by {A0, . . . ,Ai}. The process starts again from the interruption

point: a new comparison between Ai+1 and Ai+2 takes place and goes on as much as

possible, up to a new interruption or up to the end of the path. If a new interruption

occurs, the behavior to keep is analogous to the first interruption.

Remember that patterns of length 2 and patterns of length higher than 2 are stored

in different lists: the patterns of length 2 are not definitive and are not confirmed up to

the end of the GSs analysis. Indeed, until all the GSs are not examined yet, there is still

the possibility to arrange the REs composing a pattern of length 2 in a longer and more

significant pattern.
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3.5.3 New pattern: data updating

When a candidate path of centroids corresponds to a verified symmetric arrangement

of length l ≥ 3, the pattern of REs is stored to be provided as output, while a series

of data must be updated to avoid patterns intersection (we decide to assign a RE to a

single pattern, which is the first detected containing it) and data incongruence.

• Update of the list of paths. A remaining path containing a centroid Ci corre-

sponding to a RE already arranged in a pattern must be split. Let

(C ′0, . . . , C
′
i−1, Ci, C

′
i+1, . . . , C

′
q−1)

be a path in the list of paths not yet verified and suppose it contains Ci. Consider

the two “sons paths” (C ′0, . . . , C
′
i−1) and (C ′i+1, . . . , C

′
q−1) obtained by remov-

ing Ci from the path (notice that there could be only one son path if Ci is an

extreme of the path). Each son path must have length l ≥ 3: if it has such a

length it is stored in the list of paths to verify, otherwise it is discarded. After this

step the list of path must be reordered by descending length of the paths.

• Update of the list of d-adjacency matrices. For each centroidCi corresponding to

an just arranged RE we must update all the adjacency matrices of the current GS,

by deleting all the relations with other centroids in every remaining d-adjacency

matrix. After this step, we must check the updated matrices to have a sufficient

nOccur: if nOccur < 2 the corresponding adjacency matrix is deleted from the

list.

• Update of the list of grouping surfaces. The REs composing the found verified

pattern are deleted from the lists of REs associated to GSs not yet examined, if

they are contained in them. If after this updating a GS has an associated REs list

containing only one element, the GS is deleted.



The proposed approach 85

• Update of the list of patterns of length 2. Every pattern of length 2 intersecting a

longer found pattern is deleted.

This data updating ensures not to find a pattern contrasting with the already stored

ones.

Indeed, when a pattern of length 2 is found no data are updated, because we need

to keep the corresponding REs available for possible new longer patterns.
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Chapter 4

Implementation and experiments

This chapter addresses the implementation of the approach proposed in the previous

chapter. The first section describes the development environment, giving some details

related to the CAD system and the programming languages adopted. The second section

reports some of the results obtained applying the method on a set of CAD models.

4.1 Development environment

The developed algorithm requires as input a set of faces selected from the BRep model.

Moreover, it is necessary to visually highlight the results of the algorithm, by indicating

the detected patterns directly on the original model. To this aim, a tool allowing directly

accessing and modifying a BRep model has been developed.

The adopted CAD system is SolidWorks c©, and it is the application programming

environment in which BRep models can be created, visualised, accessed and processed.

The algorithm has been developed in the C# programming language, using Visual Stu-

dio as development environment. The generated methods have been integrated as a

plug-in for the CAD system. A plug-in (or plugin, extension) is a software component

that adds a specific feature to an existing software application, if it supports them. This
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integration enables customization of the CAD system.

Microsoft Visual Studio

Microsoft Visual Studio is an integrated development environment (IDE) from Mi-

crosoft and provides the user interface (UI) for standard components, such as com-

pilers, editors, and debuggers. Features like Visual C++ and Visual Basic that are in-

cluded with Visual Studio are themselves extensions of the IDE. It is used to develop

console and graphical user interface applications. Visual Studio supports a range of

programming languages, such as C/C + +, V B.NET , C# and F#. It also supports

XML/XSLT ,HTML/XHTML, JavaScript and CSS. By separately installing lan-

guage services, other languages such as M , Python, and Ruby can be treated by Visual

Studio environment. It accepts plug-ins that enhance the functionality at almost every

level, including adding support for source-control systems (like Subversion and Visual

SourceSafe). Visual Studio includes a code editor supporting IntelliSense (the code

completion component) as well as code refactoring. The integrated debugger works

both as a source-level debugger and a machine-level debugger.

SolidWorks c© CAD System

Solidworks c© is a Parasolid-based solid modeler and utilizes a parametric feature-based

approach to create models and assemblies.

Parameters refer to constraints whose values determine the shape or geometry of the

model or assembly. Parameters can be either numeric parameters, such as line lengths

or circle diameters, or geometric parameters, such as tangent, parallel, concentric, hor-

izontal or vertical, etc. Numeric parameters can be associated with each other through

the use of relations, which allows them to capture design intent. With the term “design

intent”we intend high-level geometric relations which can be seen as objectives and

requirements between a CAD model sub-parts, established by the designer to predeter-
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mine how to respond to changes and updates.

Finally, the parametric nature of SolidWorks c© means that the dimensions and relations

drive the geometry.

Features are the shapes and operations that construct the part. Shape-based features

typically begin with a 2D or 3D sketch of shapes such as bosses, holes, slots, etc. This

shape is then extruded or cut to add or remove material from the part. Operation-based

features are not sketch-based, and include features such as fillets, chamfers, shells, ap-

plying draft to the faces of a part, etc.

Building a model in SolidWorks c© usually starts with a 2D sketch, which consists of

geometry such as points, lines, arcs, conics (except the hyperbola), and splines. Di-

mensions are added to the sketch to define the size and location of the geometry. Re-

lations are used to define attributes such as tangency, parallelism, perpendicularity, and

concentricity. The dimensions in the sketch can be controlled independently, or by

relationships to other parameters inside or outside of the sketch.

Additionally, SolidWorks c© can import plain BRep models created by other CAD

systems.

We obtained the BRep information by exploiting the Application Programming In-

terface (API) of this CAD system: the API consist of a wide range of functions that the

developer can recall from Visual Basic for Applications (VBA), VB.NET, Visual C#,

Visual C + + 6.0, and Visual C + +/CLI , to access SolidWorks c© functionalities. In

particular, we used API to achieved the information about faces, edges, vertices, loops

and all other entities constituting the boundary of an object. API can also allow opera-

tions such as creating a line, changing attributes of the faces, or verifying the parameters

of a face surface.

Our plugin is registered and starts up when SolidWorks c© starts, becoming visible

in the Taskpane tab and available for the user.
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4.2 Experiments

We have tested our algorithm on various BRep models and in this section a number of

experiments are reported together with output details. Some models were created using

the commercial CAD system SolidWorks c©, and others were collected from the public

repositories GrabCAD [1] and TraceParts [3].

In the following graphical representations we will color in:

• violet the faces corresponding to the selected repeated entities (input);

• red nuances a detected linear pattern of repeated entities (output);

• green nuances a detected circular pattern of repeated entities (output).

If more than one linear (circular) pattern is detected in the experiment, a different nu-

ance of red (green) will be associated to each linear (circular) pattern.

Furthermore, we will highlight the centroids of the selected repeated entities by

blue circles in correspondence of their positions.

4.2.1 Cylindrical mechanical component

Figure 4.1: Cylindrical mechanical component. a) Selected REs; b) detected pattern.
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We first consider the cylindrical mechanical component represented in Figure 4.1. Fig-

ure 4.1 a) highlights the selected faces as input, constituting the REs whose any regular

arrangement is searched. Each RE is composed by a cylindrical face and two planar

faces adjacent to it.

As expected, the algorithm detects a single translational linear pattern (Figure 4.1

b), constituted by all the four initially selected REs. This is the maximum pattern case

described in Chapter 3.

4.2.2 Grid

Figure 4.2: Grid. a) Selected REs; b) detected patterns.

The set of selected REs {A0, . . . ,A39} is constituted by 40 holes, each of them repre-

sented by four planar faces. The input faces are colored in violet in Figure 4.2 a).

The algorithm detects two distinct linear translational patterns, each of them con-

taining 20 REs as shown in Figure 4.2 b). The first is composed by {A0, . . . ,A19}, the

second by {A20, . . . ,A39}. The lines referred to the paths of centroids of each pattern

are parallel. All the input repeated entities are included in the detected patterns.
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Notice that also 20 parallel linear translational patterns of length 2 exist in the

model, if we consider the patterns constituted by pairs of REs {Ai, . . . ,Ai+20}, for

i = 0, . . . , 19, but the algorithm opts for the longest existing patterns.

4.2.3 Repeated cube

Figure 4.3: Repeated cube. a) Selected REs; b) detected pattern.

The input set in this example is constituted by a set of 5 digs, each of them composed

by 3 squared faces (the selection is represented in Figure 4.3 a). The initial input set is

therefore {A0,A1,A2,A3,A4}.

The algorithm detects 1 linear translational pattern of length 3 whose components

are the elements of the set {A1,A2,A3}. The REs A0 and A4 are not arranged in any

pattern, as represented in Figure 4.3 b).

We observe that, during the centroid analysis, a path of type line involving the

centroids of A0,A1,A2,A3 is detected. Anyway, the following face check excludes A0

as its orientation is clearly different respect to A1,A2,A3.
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4.2.4 Pad with blind-holes

Figure 4.4: Pad with blind-holes: selected REs. a) first view; b) second view; c) third view.

Figure 4.5: Pad with blind-holes: detected patterns. a) first view; b) second view; c) third view.
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Consider as input the set of 16 pockets highlighted in Figures 4.4 a), 4.4 b), 4.4 c),

noted by A0, . . . ,A15. Each RE is composed by 2 planar faces and 2 cylindrical faces.

As shown by the reference figures, the REs are placed on different sides of the “T” base

component, in particular on the top, on the left, on the front, on the right of it.

The algorithm detects 5 linear translational patterns of length 3, as represented in

Figures 4.5 a), 4.5 b), 4.5 c). The first two patterns are detected on the top side of

the base component: they are the sets {A0,A1,A2} and A4,A5,A6. These two pat-

terns come from a single detected centroid path of length 7, involving the centroids

of A0, . . . ,A6. However, A3 is differently arranged respect to the other 6 REs on the

path, despite its centroid is positioned on the same line path of the others. For this rea-

son, the algorithm detects two distinct translational patterns, breaking the detection in

correspondence of A3 and excluding it from the patterns. Then, the other 3 linear trans-

lational patterns are positioned on the left, front, and right side of the base component.

They are the sets {A7,A8,A9}, {A10,A11,A12}, and {A13,A14,A15}.

4.2.5 Multiplier with gear pump

Figure 4.6: Multiplier with gear pump.

We analyze the mechanical component model showed in Figure 4.6. Different sets of

congruent sub-parts are present in this model. We performed two separate symmetric
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arrangement detection processes, each of them referred to a different set of congruent

sub-parts.

Figure 4.7: Multiplier with gear pump: first selection. a) Selected REs; b) detected patterns.

The first input set, as Figure 4.7 a) shows, is composed by 6 REs, each of them

constituted by 7 planar faces.

The algorithm detects two circular translational patterns (see Figure 4.7 b), each

of them containing 3 REs from the input set: the first one is composed by the set

{A0,A1,A2}, the second one by the set {A3,A4,A5}. The two circumferences result-

ing from the detected centroid paths have same radius. Furthermore the two circumfer-

ences share the constant centroid distance.

Figure 4.8: Multiplier with gear pump: second selection. a) Selected REs; b) detected pattern.
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The second detection process receive as input a set of 4 congruent sub-parts, each

of them composed by a cylindrical face and a circular planar face (Figure 4.8 a)).

As Figure 4.8 b) shows, the output is constituted by a single circular translational

pattern containing all 4 REs of the initial set (maximum pattern case).

4.2.6 Castle

Figure 4.9: Castle. a) Selected REs; b) detected patterns.

The selected input set (see Fig. 4.9 a) is composed by 8 REs, each of them representing

a pocket composed by 7 planar faces.

The output result of the detection algorithm is the following (see Fig. 4.9 b):

• the set {A0,A2,A4,A6} constitutes a first closed circular translational pattern;

• the set {A1,A3,A5,A7} constitutes a second closed circular translational pattern.

The two patterns are detected on two different grouping surfaces and no RE is excluded

from the set of detected patterns.
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4.2.7 Circular plate 1

Figure 4.10: Circular plate 1. a) Selected REs; b) detected patterns.

The input set is composed by 20 thru-holes on a circular plate, each of them composed

by a single cylindrical face (Fig. 4.10 a). The algorithm detects the REs to be subdi-

vided on 3 different circular translational patterns (Fig. 4.10 b), each of them having

in common with the others the center of the reference circumference. No RE from the

input set in excluded from the detected patterns.

4.2.8 Circular plate 2

Figure 4.11: Circular plate 2. a) Selected REs; b) detected patterns.
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In this example 28 thru-holes constitute the input set. In this case it is not visually

evident a pattern involving the whole set of part of the set of REs (Fig. 4.11 a). Anyway,

the algorithm detects two concentric circular translational patterns of length 9 (Fig. 4.11

b). The REs noted by A0, . . . ,A9 are excluded from the detected patterns.

4.2.9 Circular plate 3

Figure 4.12: Circular plate 3. a) Selected REs; b) detected patterns.

We consider the circular plate represented in Figure 4.12 a). We select all the 24 cylin-

drical faces corresponding to the holes.

The algorithm in this case detects 1 circular translational patterns of 8 REs from the

initial set, which are those located on the border of the plate. Furthermore, 4 parallel

linear translational patterns are detected, each of them composed by 4 REs. The lines

passing through the linear patterns are parallel and the distance between centroids is

equal in each of them.

An alternative and equivalent detection may be the identification of 4 parallel linear

translational patterns along the vertical direction, identical in type and in centroid dis-

tance to the 4 detected along the horizontal direction. The horizontal direction is also

confirmed by the red nuances changing in Fig. 4.12 b). The result depends on the order
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in which the REs are selected to create the input set.

Suppose to modify the original model as shown in the following figures:

Figure 4.13: Circular plate 3 modified. a) Selected REs; b) detected patterns.

Furthermore, suppose not to change the selecting order of the REs and to select the

added RE A′ as last (Fig. 4.13 a). The adding of a A′ forces a change in direction in

linear pattern detection, as highlighted in 4.13 b). The pattern containing A′ is detected

first as corresponding to the longest path of centroids (length 5), then the other 3 linear

translational patterns of length 4 follow the just fixed vertical direction.

4.2.10 Circular plate 4

Figure 4.14: Circular plate 4. a) Selected REs; b) detected patterns.
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The circular plate model in Fig. 4.14 a) has 119 thru-holes. We select the set of 109

congruent holes, having smaller diameter respect the 10 holes arranged on the on the

board of the model, also congruent to each other. The selection is represented in Fig.

4.14 a).

The algorithm detects 12 parallel linear translational patterns:

• 1 pattern of length 6;

• 2 patterns of length 7;

• 1 patterns of length 8;

• 2 patterns of length 9;

• 4 patterns of length 10;

• 2 patterns of length 11.

The RE A′ is excluded from the identified patterns, as shown in Fig. 4.14 b).

4.2.11 Electric component

Figure 4.15: Electric component.
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The model considered in this test is represented in Fig. 4.15. We perform 4 different

detection processes, in correspondence of 4 sets of congruent sub-parts.

Figure 4.16: Electric component: first selection. a) Selected REs; b) detected patterns.

In Fig. 4.16 a) the first input selection is highlighted: the input is constituted by a

set of 30 congruent extrusions, each of them represented by a set of 5 planar rectangular

faces.

The detection algorithm returns the information relative to the presence of 3 linear

translational patterns of length 10 (Fig. 4.16 b). So, no RE from the initial set is

discarded by the detection process.

We observe that an alternative valid

result exists if we consider 10 linear

translational patterns of length 3 along

horizontal direction instead of vertical di-

rection, as shown in the figure on the

left. This option is not detected by the

algorithm because it gives precedence to

longest existing patterns in the input set.
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Figure 4.17: Electric component: second selection. a) Selected REs; b) detected patterns.

The second selection is referred to the set of 7 pockets represented in Fig. 4.17 a).

They are congruent and each of them is composed by 5 planar faces.

The detection result is a linear translational pattern of maximum length, as shown

in Fig. 4.17 b).

Figure 4.18: Electric component: third selection. a) Selected REs; b) detected patterns.

The third input set is constituted by 7 pockets (represented in Fig. 4.18 a), analo-

gously to the previous selection. In this case REs are composed by 7 planar faces.

The algorithm detects a linear translational patterns involving all the REs in the in-

put set (see Fig. 4.18 b).
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Figure 4.19: Electric component: fourth selection. a) Selected REs; b) detected patterns.

The set of 6 congruent pockets represented in Figure 4.19 a) are selected as input

set. Each pocket is composed by 7 planar faces.

The output of the algorithm in this case is a pair of linear translational patterns, each

of them containing 3 REs (Fig. 4.19 b). The centroid distance is the same in both the

detected patterns.
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Chapter 5

Conclusions and future work

This research proposes an approach to detect regular patterns of congruent sub-parts in

an solid object, aiming at recovering the high-level information embodied in intention-

ally incorporated symmetries in a given BRep model.

The approach has been implemented in a commercial CAD (Computer-Aided De-

sign) system and detects linear, circular translational and reflectional patterns of con-

gruent user-selected sub-parts of the model.

Given an input constituted by a set of faces corresponding to the set of selected

repeated entities (see Definition 3.1.1), the algorithm applies a progressive grouping to

the initial set, up to reach the sets of sub-parts corresponding to verified regular patterns.

The first grouping is based on the consideration that patterns are usually applied on

a face at some creation stage when designing a model. For this reason, it is appropriate

to think that patterns lie on the same face or, in alternative, on more than one face

lying on the same host surface. Thus, the first grouping operation classifies repeated

entities putting together those lying on faces with the same host surface, giving rise to

the grouping surface concept (defined in Section 3.2).

To speed up the detection process, we translate the problem in a simplified one: to
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detect symmetric arrangements of repeated entities we first search symmetric arrange-

ments of their corresponding centroids. It is clear that the problem of treating points

rather than a set of faces is handier. This consideration arises from the awareness that if

a set of repeated entities are symmetrically arranged, then also their centroids do. A fur-

ther restriction of the search field can be applied by taking into account that a necessary

condition for the existence of symmetric arrangement of sub-parts is that the respective

centroids must be arranged at a constant distance from each other. The repeated entities

can therefore be grouped coherently to this criterion. This last refinement of the input

set is implemented by using adjacency matrices, which store the relations between the

repeated entities whose centroids are equally spaced according to a fixed distance value

(see Subsection 3.2.1).

Starting from the smaller distance value, the algorithm finds all the existing paths of

equally distant centroids of length at least 3. The paths of centroids we consider can be

linear or circular. The method ensures the detection of paths as long as possible (details

in Section 3.3).

The found sets of paths is further verified to state the existence of the pattern of

the corresponding repeated entities, indeed the well-positioning of the centroids cannot

grant the well-positioning of the associated repeated entities. The orientation of the

sub-parts need to be verified. It is done by analyzing their vertices and faces, aiming

to detect if there exist an isometry that correlates them. If an isometry representing the

repetition exists, the pattern is verified and the found transformation characterizes it. If

such an isometry covers only parts of the set, then we consider the partial patterns, if

their length is at least 3.

Once all the identified candidate patterns are checked, the conceived method intends

to analyse the repeated entities not verifying the isometry conditions suggested by their

centroid arrangement, and so not belonging to a effective pattern yet. To detect if other

relations exist, the method verifies if they can be coupled two by two in translational or
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reflectional patterns of length 2, starting with the nearest ones, and then continuing for

creasing distance.

The proposed approach focuses on the identification of regular patterns of sub-

parts, supposing to receive as input a set of effectively congruent sub-parts. No further

information related to their arrangement or to their congruency mappings (intended as

mappings expressing how each sub-part can be overlapped to the others) is provided.

This method has many analogies with the one proposed in [17], as both are based

on a marked vertices’ treatment and use centroids well-positioning as a necessary con-

dition for the existence of a symmetric arrangement. The advantage of this work is the

possibility to avoid the time consuming searching of the congruency mappings between

repeated sub-parts for the detection of a possible symmetric arrangement, while in [17]

they are necessary. Furthermore, symmetries (intended as those transformations that,

once applied to a shape, leave it unchanged) of a single sub-part do not need to be

computed for the detection of patterns, unlike [17]. This allows to possibly apply this

algorithm to data coming from any process of congruent sub-part detection, without

demanding further information related to how the congruency has been verified.

The described grouping operations are built to reach the detection of the longest

and dominant patterns as soon as possible. To make the process faster, the earlier in-

terruptions of the path search is applied in case of detection of a pattern of maximum

length on a grouping surface. In fact, this solution allows switching to the next grouping

surface when it becomes clear that no more patterns can be found in the current one. In

this way we avoid to wait until the natural end of the process.

The proposed approach gives precedence to the detection of longest patterns, linear

then circular. Furthermore, it identifies first patterns with smaller centroid distances,

considering the proximity of the centroids a valid signal for the pattern existence. Any-

how, in some situations other patterns can be preferred. For instance, in some cases,

it is preferable to consider patterns covering the entire set of repeated entities, instead
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of the longer ones but not including all the sub-parts. Thus, a possible extension of

the method could be its parametrisation, allowing to indicate which criteria have to be

privileged. Another option could be to extract all the possible alternative patterns and

let the user choose among them.

Another possible improvement is the possibility of removing the limitedness of the

pattern search only within a grouping surface, including also symmetric arrangements

of congruent sub-parts lying on faces with different host surfaces.

A further generalization of the implemented procedures could admit also conical,

spherical and toroidal faces for the input sub-parts. Freeform surfaces are widely used

in industry, so it could be useful an extension of the method to faces defined by this

class of surfaces as well. Furthermore, it is significant to extend the class of symmetric

arrangements to detect, including for example rotational, glide reflection and screw

patterns.

The tolerance level chosen in the proposed approach has been established according

to the size of the test CAD models. A possible improvement of the method could

involve the automatic adjustment of the tolerance level according to the order of size of

the input repeated entities.

Finally, a further relevant aspect for detecting all possibly relevant relationships in

the model is the identification of the correlation between the detected patterns. For

instance, it would be interesting to put in correspondence two circular translational

patterns sharing the same circumference center and lying on the same plane (as in Sub-

section 4.2.7), or to relate two parallel linear translational patterns of the same length

(as in Subsection 4.2.2). This further development involves the analysis of the curves

the centroids of the sub-parts lie on.
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