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Abstract. 
Current production is moving from the mass production concept to the product customization and 

personalization. Customers are not anymore only buyers. Not only they are becoming actors within the 

Product Development Process (PDP) but, thanks to new production technologies like 3D printers, they can 

be both designers and producers. In this scenario, the development of user-friendly design tools is crucial. 

Declarative approaches are suitable and can address such requirements. They exploit generally understood 

and shared concepts closer to the way people perceive shapes than to the way shapes are modeled with 

complex geometric models. To this aim, this paper presents a generic framework for understanding the 

shape characteristics associated to perceptual/aesthetic properties of 3D free form shapes. This framework is 

used to investigate whether there is a common judgment to characterize the flatness of surfaces and which 

are the surface shape characteristics affecting the flatness perception? From the experiments, it results that 

the size and transition of the surrounding influence the perception of the flatness of a given surface 

strengthening the classification consistency. 

 

 
Keywords: Free form surfaces, Geometric Modeling, Declarative Modeling, Machine Learning Application, Aesthetic 
Properties, Industrial Design. 
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Introduction 

Today, there exists a large variety of products with many shape variants. In such a situation, the aes-

thetic appearance of the product and its emotional affection are key factors often driving the cus-

tomer choice. Thus, designing appealing objects plays a key role in the commercial success of a prod-

uct, and being able to design attractive shapes while controlling the evoked positive emotions can 

help to better address customers’ desires.  

Understanding such affective influence of the product shape in the early design phases of the Prod-

uct Development Process (PDP) requires the use of appropriate methods that can extract and trans-

form subjective impressions about a product into concrete design parameters and characteristics. 

This methodology refers to as Affective Engineering (AE). Integrated in the PDP, AE provides a plat-

form where emotional features are incorporated into design of appealing products (Nagamachi, 

2011).  AE deals with perception of shapes, which refers to very complex emotional-intuitive mecha-

nisms that capture, organize, identify and interpret the sensory information in the nervous system. 

The perception is sometimes described as a process of constructing mental representations of the 

sensory information, shaped by knowledge, memory, expectation and attention. It is therefore linked 

not only to shape elements but also to many other product and customer characteristics, such tex-

tures, material, cultural and fashion values. The final and long-term objective of the AE is to define a 

direct mapping between the product characteristics and the emotions it evokes. Giannini et al. 

(Giannini & Monti, 2010) provide an overview of the most common AE methodologies used to inves-

tigate the relationships between shape features and emotions from various disciplinary perspectives, 

including psychology and computer science. Among the discussed methods, the one proposed by the 

FIORESII project team involves the engineering in reverse approach which considers the aesthetic 

properties of the final shape as a mean for linking the shape characteristics to the emotional impres-

sion and as modelling tools for attaining it (Giannini, Monti & Podehl, 2006). 

The aesthetic properties identified by the FIORES II project play a key role in the perceptual impres-

sion of shapes and correspond to terms normally used by designers when modifying a shape. The 

development of geometric modelling systems allowing the users to employ previously defined words 

to construct the desired shape is called Declarative Modelling (Lucas, Martin, Philippe, & Plémenos, 

1990). Its main advantage is the ability to allow the creation of objects by providing only a set of ab-

stract words, generally based on geometric, topological or physical properties widely known. This 

methodology could be very useful for defining user-friendly tools easy to use also by nonprofessional 

designers. Actually, taking into consideration the fact that customers are valued more than before, 

they are currently more and more included within the product definition cycle. Now, with the availa-

bility of new materials and the development of new manufacturing technologies such as low cost 3D 

printing (Hod, 2014) and five-axis CNC machines, the question is not anymore which shape can be 

produced, but which shape should be produced to best fit the customers’ requirements? Thus, not 

only designers have more ‘freedom’ to design what they like but also users can play the role of both 

designers and producers. As a consequence, CAD systems need to be more intuitive and to offer us-

er-oriented design tools and parameters integrating an interaction language closer also to non-
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professional designers. This interactive language presents a qualitative judgment of the shape from a 

perceptual and appearance point of view and often considers more abstract and general notions (e.g. 

words) to describe the shape. These words can be used to define high-level manipulation tools if the 

relationships between the abstract word meaning and the corresponding underlying geometric char-

acteristic of the shape are identified. When people classify shapes, with respect to some properties, 

they unconsciously follow certain rules linked to various elements, including the changes of the sur-

face shapes. Sometimes, these rules can be explicitly explained but more often they are implicit and 

difficult for the persons to be expressed in terms of geometric properties of the shape. This is even 

much more difficult when the aim is to map emotions to a geometric model. This is due to the fact 

that describing a shape is a very difficult and ambiguous task which relies on personal knowledge, 

experience, culture, judgment as well as on different languages (Wiegers, Wang, & Vergeest, 2009). 

Despite this complexity, various efforts have been done to describe verbally shapes according to 

overall characteristics (Kassimi & Beqqali, 2011; Lian, Rosin, & Sun, 2010). However, they have mainly 

focused on retrieval issues thus they are not enough precise to specify which areas should be more 

affected by the modifications. 

Some attempts to try to identify aesthetic properties and to link them to geometric characteristic 

have been undertaken (Giannini, Monti, & Podehl, Aesthetic-driven tools for industrial design, 2006). 

However, those approaches only refer to free form curves and are not yet formalized for free form 

surfaces. Actually, this is due to the fact that trying to define the aesthetic properties of 3D shapes 

and map them to free form surface characteristics using classical observation techniques is practical-

ly impossible. Those mechanisms are very complex and involve many factors. Therefore, finding the 

direct relationships between aesthetic properties and the free form surface geometric characteristics 

requires implementing more sophisticated methods. Having capitalized such knowledge, new indus-

trial applications can be foreseen in which the customer is an important actor alongside with the 

other experts in analyzing and defining the product.  

The objectives of this paper is to propose and to test a generic framework for collecting and pro-

cessing the judgments of multiple users subjected to the visualization of free form shapes which have 

to be classified with respect to aesthetic properties. Those free-form shapes are characterized by 

intrinsic geometric characteristics that can be extracted in a pre-processing step. The key element of 

the proposed framework is the application of Machine Learning Techniques (MLTs), and more pre-

cisely supervised learning techniques, in detecting the classification rules between the user-specified 

aesthetic properties and the automatically-extracted geometric characteristics of the free form 

shapes presented to the users. Effectively, supervised learning techniques are good at finding rela-

tionships and rules between numerical values and classes of numerous instances. 

Based on a preliminary validation on free form curves classified with respect to the straightness 

property (Petrov A. , Pernot, Véron, Giannini, & Falcidieno, 2014), this framework is extended to free 

form surfaces. Here, the idea is to evaluate whether there exists a common judgment to characterize 

the flatness of a free form surface. The extraction of the aesthetic classification rules is based on 

considering the perception of the aesthetic property of non-professional designers (potential cus-

tomers) by conducting interviews. In addition, the proposed framework is exploited to investigate if 

and how the size of the surrounding and the transition towards the surrounding affect the percep-

tion of the flatness of a given surface area. Finally, this approach helps identifying the set of geomet-

ric characteristics involved in the classification rules.  
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In the remainder of this paper, section 1 introduces the different elements constituting the generic 

framework. Section 2 details the elements of the framework and notably the generation of the in-

stances, the extraction of the geometric characteristics of those instances as well as the adopted 

classification method. Then, section 3 introduces the experiments and methods which have been set 

up to answer to four main questions : 1) Is there a common perception of the flatness, 2) Is the 

amount of surrounding influencing the perception of flatness ?, 3) Is the type of surrounding influ-

encing the perception of flatness ?, 4) What are the most relevant attributes to characterize the flat-

ness ? The final section concludes this paper.  

1 Overall framework specification 

Machine Learning Techniques (MLTs) and supervised learning algorithms exploit statistical mecha-

nisms for discovering classification rules from already categorized data to make prediction on new 

occurrences. Therefore, it requires the definition of a huge structured dataset (the base of the tem-

ple in Figure 1.1Figure 1.1) on which classifiers will be trained. The specification of such a training set 

is very crucial since it affects the relevance of the extracted classification rules. Not only the number 

but also the choice of the selected shapes is very important. The general validity of the identified 

classification rules is not guaranteed if the variability of the shapes is limited and does not cover the 

possibilities of shape arrangements that may affect the perception of a given aesthetic property. 

Thus, specific methods for the creation of those instances have been devised through the modifica-

tion of instance replications and are further described in next section. The way the training and test-

ing sets are defined is explained in the section 2.2. Furthermore, the approach followed for associat-

ing the classification to the single instance can be different and may affect the organization and 

number of the instances in the dataset. For instance, if the classification results from interviews, rep-

etition of instances can be useful to verify the consistency in cataloguing.  

 

Figure 1.1: The overall framework 

The second element of the framework is the other pillar of the temple (left pillar of the temple in 

Figure 1.1). It gathers the geometric quantities characterizing the instances, i.e. free form surfaces in 

this paper, which are potentially meaningful for the identification of the classification rules. Here, the 

key issue is to define which geometric quantities are relevant regarding a given aesthetic property. A 

very important point to consider is to tune the geometric characteristics (e.g. area, curvature, length, 
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volume) in order to obtain shape descriptors independent of the size, position and orientation of the 

considered shapes. The choice of the geometric quantities is crucial since the instances will be char-

acterized and described by those values from which MLTs will try to extract the classification rules. 

Thus, if the quantities to be analyzed are not well chosen, the identified rules may be not representa-

tive. The different quantities which have chosen are detailed in section 2.3 together with the method 

used to extract them. 

The third element of the framework is the pillar representing the classification of all the instances of 

the dataset (right pillar of the temple in Figure 1.1). It firstly requires the specification of the set of 

classes to consider, then their assignment to each instance of the dataset. In this paper, the assign-

ment results from the analysis of interviews over a group of participants. When dealing with partici-

pants, several issues inherent to the reliability of the classification have to be solved. For example, an 

efficient and intuitive way for conducting the interviews over a sufficiently representative sample 

(e.g. number, scientific and cultural backgrounds) has to be found. The method used to let the partic-

ipants classifying a huge number of instances in a reasonable time is detailed in section 2.4. 

The fourth element is the beam of the temple that corresponds to the adopted MLTs and associated 

control parameters. This part represents the actual application of the MLT with the selection of the 

most suitable learning algorithms for this kind of application, i.e. link between geometric quantities 

and aesthetic properties using supervised learning techniques. Here, the main challenge relies on the 

identification of the best couple of classifier and associated control parameters, i.e. the couple that 

would maximize the rate of well-classified instances. If the instances are classified with more than 

one label (multiple labeling) then, before applying the basic single label learning algorithms, dedicat-

ed problem transformation methods have to be applied. Actually, such methods transform a multi-

labeled classification into a single-labeled classification while preserving the relation between all 

labels (Read, 2010). In the implemented version of the approach, five of the most widely used learn-

ing algorithms have been tested and tuned: C4.5 Decision Tree (Quinlan, 1993), Naïve Bayes (George 

& Langley, 1995), k-Nearest Neighbor (Tan, Steinbach, & Kumar, 2006), Support Vector Machine 

(Vladimir, 1995) and Classification Rules (Cohen, 1995). The method used to identify the best learn-

ing algorithm is introduced in section 3.1. 

The final element of the framework is the roof that represents the experiments and results. Here, 

two methods have been designed to answer four questions: 1) Is there a common perception of the 

flatness, 2) Is the amount of surrounding influencing the perception of flatness ?, 3) Is the type of 

surrounding influencing the perception of flatness ?, 4) What are the most relevant attributes to 

characterize the flatness ? The first method transforms the multi-label in a single-label problem so as 

to perform comparison with a more general classification, whereas the second method performs 

several mutual comparisons between the classifications of several participants. The two methods are 

introduced in section 3.3. Then, the analyses and tests performed to answer the four questions are 

presented in sections 3.4 to 3.7. 

2 Setting up the framework for free form surfaces 

Differently from what has been possible for free form curves classified with respect to the straight-

ness property (Petrov A. , Pernot, Véron, Giannini, & Falcidieno, 2014), for free form surfaces, there 

exists no known relationship between the aesthetic properties and the geometric quantities of free 

form surfaces. Therefore, several issues have to be faced. First, the type of aesthetic property has to 
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be identified (section 2.1). Then, to be able to apply Machine Learning Techniques, a huge dataset 

has to be generated (section 2.2). The geometric quantities characterizing the free form surfaces also 

have to be identified and extracted from all the instances of the database (section 2.3). Finally, be-

fore training the classifiers, all the surfaces/instances have to be classified using a dedicated ap-

proach (section 2.4). 

2.1 From the straightness of curves to the flatness of surfaces 

As a starting point in the definition of aesthetic properties of free-form surfaces, the flatness has 

been taken into consideration as the extension of the straightness for curves. It is a qualitative de-

scriptive term, which can be well understood even by non-professional designers, thus it is a good 

candidate for the development of declarative modelling capabilities for both professionals and non-

experts. We assume that surfaces can be considered flat only if it is perceived very similar to a planar 

surface. From an engineering point of view, a flat surface corresponds to a surface that belongs to a 

given interval of tolerance defined by two parallel planes. The distance between the two planes is 

called the interval of tolerance. From a perceptional point of view, a flat surface is not only a plane 

but also a surface where the curvature in both directions does not greatly vary from zero. The curva-

ture is not the only indicator of flatness because there are many shapes that are “dominantly” flat 

but they cannot be considered as flat from the perceptional point of view. Similarly to curves, where 

the bounding rectangle gives strong indications on the curve straightness, the bounding box dimen-

sions of the surface might be related to the surface flatness. However, it is evident that a direct ex-

tension of the curve straightness equation to surface flatness is not possible because the geometry 

for surfaces is more complex than for curves. Thus, in the context of surfaces, we have designed a 

specific approach for the classification of surfaces with respect to the flatness property. 

2.2 Generation of the instances dataset 

The input to Machine Learning Techniques is a set of classified instances (the base of the temple in 

Figure 1.1). Each instance is an individual and independent example of the concept/rule to be 

learned and it is characterized by the values of a set of predefined attributes. Therefore, the choice 

of the instances is very important: the dataset should contain shapes that are representative of the 

possible surfaces appearing on industrial products and suitable for the flatness evaluation while pre-

senting meaningful variations on the key shape characteristics/attributes. Additionally, since we are 

interested in understanding the rules which drive the perception of flatness of surfaces belonging to 

complex objects, it becomes crucial to understand if and how such a perception is changing depend-

ing on the type of the product as well as on the surrounding, i.e. the shape context embedding the 

analyzed surface. Thus, we decided to consider surfaces belonging to two very common industrial 

products: a coffee machine and a car (Figure 2.1). 
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Figure 2.1: Target Surfaces of 3 different objects 

Moreover, since the objective is also to pave the basis not only for classification capabilities but also 

for modification tools, it becomes important to consider surfaces obtainable through continuous 

variation. Starting from the assumption that the flattest surface is the planar one, to generate the 

Initial Dataset (IDS) we have performed a continuous deformation of a single planar patch to reach 

the so-called Target Surfaces (TS) belonging to three object areas : coffee machine (CM), car back 

(CB) and car door (CD). During the deformation, each surface shape originates an IDS instance. Vari-

ous target surfaces have been considered to satisfy the need of making a direct relationship between 

geometric properties and aesthetics, e.g. to determine the influence of the geometric properties 

such as symmetry (rotational or planar), asymmetry or the undulation to the perception of flatness. 

For the analysis of the impact of a specific property, a surface can be more suitable than others. For 

instance, the target shapes of a coffee machine or a car back can be considered as more “regular” 

shapes than the one of the car door since: the former shapes can be easily used to represent sym-

metric shapes whereas the latter is not suitable for this purpose. The full set of the adopted target 

shapes is shown in Figure 2.1. 
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Figure 2.2: Target Surfaces (TS) used to automatically compute the IDS for the consumer appliance (i.e. Cof-

fee Machine) context 

2.2.1 Deformation paths and morphing process for shape instances generation 

Being the shape classification obtained through interviews (section 2.4), the sequence of presenta-

tion of the shapes is rather important since it might affect the perception. Thus, each step of modifi-

cation of the initial surface is performed in such a manner that during the modification it follows a 

so-called Deformation Path (DP) defined by the sequence of Target Surfaces (TS). This sequence is 

then followed by a Morphing (M) operator which generates many instances between the TS. Thus, 

many instances can be generated and ordered in an easy way which also helps tracking and under-

standing the changes of flatness classes. The objective of each deformation path is to obtain a wide 

range of possible shapes changing as much as possible their geometric properties in order to under-

stand how they affect the perception of flatness. The idea is to have shapes with different properties 

but belonging to the same class of flatness as well as shapes with similar properties but belonging to 

a different class. The aim is to understand how a shape can be modified within the same class and 

how it can be modified to change the class. One path can be composed of few or all TS ordered in a 

different sequence. The final DP of ordered shapes is the collection of all paths together. For exam-

ple, considering the Coffee Machine, the final DP gathers together all the 5 paths of shapes having 

TsCM1 as a starting and ending Target Surface. Considering all the paths, 19 TS has been obtained. 

Based on this, 50 morphed surfaces have been generated between them. Thus, for the Coffee Ma-

chine, the IDS is made of 950 surfaces : DP (19) x M(50) = 950 instances. Clearly, the morphing has 

been limited to 50 instances between two TS. This parameter has been tuned empirically so that the 

differences between two successive surfaces is very small. Figure 2.2 shows the TS used to automati-

cally compute the IDS for the consumer appliance. Similarly, DPs have been used for the other two 

spaces of shapes (TsCB and TsCD) for the Car Back and Car Dor, and the corresponding IDS have been 

generated. 
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The two first paths, i.e. Path 1 and Path 2, are voluntarily the same. Such a repetition at the begin-

ning of each subset is relevant to address the “learning phase” of the interview. It helps the partici-

pant to learn the use of the tool and to improve his/her classification consistency. After completing 

the interview with all participants, the instances corresponding to Path 1 are removed from the da-

taset IDS before applying MLTs. To investigate the classification consistency and the effect of surface 

presentation ordering in the classification, the same sequence of instances is repeated and inverted 

several times. Path 3 contains the same intermediate TS as Path 2 but differs for the exchanged posi-

tions of TsCM2 and TsCM3. Path 4 is an extension of Path 3 for which two TS have been added be-

tween the third and fourth positions in Path 3. While designing this ordering path, the interviewees 

are perturbed during the classification process so as to to test their classification rules on a new set 

of surfaces. Finally, similarly to Path 2 and 3, Path 5 replicates Path 4 with two TS which are swapped. 

 

 

Figure 2.3: Surroundings for the three spaces of shapes 

2.2.2 Definition of the surface surrounding  

Beside the investigation of the existence of a common judgment for the flatness, we are also inter-

ested in understanding if those statements and rules are valid in absolute terms, or if they can be 

affected by the neighboring conditions in which the shape is considered. Intuitively, looking at some 

shape areas, trying to judge or describe it, the eye focuses on the surface but (often subconsciously) 

it also moves the focus towards the nearest surroundings and returns back. This phenomenon con-

firms the consideration that the perception of flatness for a given area might be affected by the sur-

rounding. Another example is, for instance, when we take in our hand a computer mouse, the per-

ception of the shape differs from the perception if the mouse is placed on a table or other wide 

plane. In order to investigate the influence of the surrounding to the perception of flatness, we have 

decided to include in the IDS also instances corresponding to the previous 950 surfaces inserted in 
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different contexts. In particular, we consider two different surroundings: smaller and greater con-

texts depending on the extension of the neighbor shapes (Figure 2.3).  

2.2.3 Generation of the complete IDS  

The same approach described for the coffee machine has been adopted for the car back and car door 

considering the two sets of TS (TsCB and TsCD) as described on Figure 2.1. Thus, three sets of 950 

surfaces can be generated, i.e. a total of 2850 surfaces. Then, placing the three sets in the three pre-

viously introduced surroundings (Figure 2.3), the complete IDS has been created (Figure 2.4) contain-

ing 8550 instances.  

 
Figure 2.4: Complete IDS composed by surfaces immersed in different surrounding contexts  

 

 

Figure 2.5: Restructuring the IDS to be used for the interviews 

However, since it can be difficult to manage such a huge dataset during the classification process, it 

has been divided it into smaller sets. Therefore, we decided to maintain the division according to the 

specific paths (Ts) and contexts (Sc) creating (3x3) 9 sets of surfaces. These 9 sets of surfaces are ran-

domly ordered in different sequences to be shown to the participant, regardless the type of objects 

and size of the surrounding (Figure 2.5). This ordering is very important for making the participants 
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able to classify the surface according to their impression and not by remembering. For instance, if we 

present the three sets of surfaces (Wc1, Sc1 and Gc1) of the coffee machine one after the other two, 

we risk that the participant will classify only the first set according his perception and will try to re-

peat the same classification for the other two. In addition, such a structuring of the IDS will help an-

swering the four main questions as discussed in section 3. 

2.3 Definition of surface parameters/attributes using intrinsic geometric quantities  

In the proposed approach, the idea is to make use of MLTs to understand the rules linking the classi-

fication of free form surfaces, i.e. the level of flatness in the present case, to the free form surfaces 

themselves. However, MLTs cannot directly work on free form surfaces as depicted on Figure 2.5. 

Thus, before applying MLTs, a pre-processing step is required and consists in extracting the geomet-

ric quantities which best characterize the classified free form shapes (left pillar of the temple in Fig-

ure 1.1). Actually, this extraction is performed in two steps: geometric quantities are first extracted 

(e.g. surface area, volume of the bounding box), and the attributes of the instances are then com-

puted. 

To be able to characterize the different surfaces composing the IDS, two sets of geometric quantities 

have been specified together with a mathematical equation for their computation. The first set rep-

resents the geometric quantities related to the surfaces to be classified (Figure 2.6 and 

 

Figure 2.7: Geometric quantities related to the surrounding 

Table 2.1) whereas the second set includes those related to the surrounding (Figure 2.7 and Table 2.2). 

The computation of all of these geometric quantities is done in Matlab using a function from the IGES 

Toolbox for importing the surface information from IGES file and extracting all geometric entities 

such as: NURBS curves and surfaces, trimmed patches, and points. Next, the surface triangulation is 

performed and the specified parameter values are computed using standard mathematical equations 

and operations (e.g. projection of points cloud onto a plane along projection vector, PCA principles 

for object orientation vectors, first and second derivative in a given point).  
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Figure 2.6: Geometric quantities of a surface and associated bounding box 

 

 

Figure 2.7: Geometric quantities related to the surrounding 

Table 2.1: Geometric quantities of a shape and associated bounding box 

As – Surface area 
Ap – Area of the projection of the surface on the plane π defined by the smallest PCA vector 
Vs – Volume that is occupied between the surface and its projection on the plane π 
V – Volume of the minimum bounding box of the surface  
A1 – The area of the biggest face of the minimum bounding box 
A2 – The area of the second biggest face of the minimum bounding box 
A3 – The area of the smallest face of the bounding box 
D – Diagonal of the minimum bounding box 
E1 – The longest edge of the minimum bounding box 
E2 – The second longest edge of the minimum bounding box 
E3 – The shortest edge of the minimum bounding box 

Mc – Mean curvature (
1

𝑝
∑ 𝐻𝑖

𝑝
1 ), where p is the number of the surface discretization points and 𝐻𝑖 is      

the mean curvature value on the i-th point on the surface 
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Gc – Gaussian curvature (
1

𝑝
∑ 𝐾𝑖

𝑝
1 ), where p is the number of the surface discretization points and 𝐾𝑖 

is the Gaussian curvature value on the i-th point on the surface 

Ac – Absolute curvature (
1

𝑝
∑ 𝐴𝑖

𝑝
1 ), where p is the number of the surface discretization points and 𝐴𝑖  is 

the absolute curvature value on the i-th point on the surface 

Na – Average normal of the surface (
1

𝑝
∑ 𝑁𝑎𝑖

𝑝
1 ),  where p the number of the surface discretization 

points and 𝑁𝑎𝑖  is the normal value on the i-th point on the surface 

Rp – Radius of a sphere that has same area as Ap (Rp = √
Ap

4π
 ) 

Rs – Radius of a sphere that has same area as As (Rs = √
As

4π
 ) 

Np – Percentage of surface with positive Gaussian curvature (%) 
Nn – Percentage of surface with negative Gaussian curvature (%) 
Nz – Percentage of surface with zero Gaussian curvature (%), Np + Nn + Nz = 1 

 

 

 

Table 2.2: Geometric quantities related to the surrounding 

Vo – Volume of the bounding box of the object  
Ao – Total area of the object 
Ao1 – Area of the biggest face of the object bounding box 
Ao2 – Area of the second biggest face of the object bounding box 
Ao3 – Area of the smallest face of the object bounding box 

Nao – Average normal of the surrounding surface patches in the object (
1

𝑝
∑ 𝑁𝑎𝑜𝑖

𝑝
1 ), where p is the 

number of the surface patches discretization points and 𝑁𝑎𝑜𝑖  is the normal value on the i-th 
point on the surface  

 

As discussed in the paper (Petrov A. , Pernot, Veron, Giannini, & Falcidieno, 2014), the use of size 

independent geometric attributes is recommended such that classification models created in this 

manner do not depend on the size of the geometric entities (curves and surfaces). This leads to more 

stable classifications and to the selection of generally valid relevant attributes. Therefore, new size 

independent surface parameters based on the previous geometric quantities have been defined and 

will be used to characterize each instance of the IDS. A common way of obtaining size independent 

parameters is to define ratios between two geometric quantities or two groups of geometric quanti-

ties of identical nature (dimension). Thus, 36 surfaces parameters (R1 – R36) have been defined and 

are listed in Table 2.3. They all have been specified using the geometric quantities of surfaces listed 

in Table 2.1 and Table 2.2. 

Table 2.3: Surface parameters built on top of the basic geometric quantities  

Ratio between the surface area As and its projection Ap: R1 = 
𝐴𝑠

𝐴𝑝
 

Ratio between the surface volume Vs and bounding box volume V: R2 = 
Vs

V
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Ratio between the longest edge E1 and the diagonal D of the Bounding Box: R3 = 
E1

D
 

Ratio between the second longest edge E2 and the diagonal D of the Bound-
ing Box: 

R4 = 
E2

D
 

Ratio between the smallest edge E3 and the diagonal D of the Bounding Box: R5 = 
E3

D
 

Ratios between the dimensions of the  Bounding Box: 

R6 = 
E2

E1
 

 

R7 = 
E3

E2
 

 

R8 = 
E3

E1
 

Ratio between the areas of the planes of the Bounding Box: 

R9 = 
A2

A1
 

 

R10 = 
A3

A2
 

 

R11 = 
A3

A1
 

Ratio between the planes areas (A1, A2, A3) and the area of the Bounding Box: 

 

R12 = 
A1

A1+A2+A3
 

 

R13 = 
A2

A1+A2+A3
 

 

R14 = 
A3

A1+A2+A3
 

Multiplication of the Mean curvature with the Radius Rp of a sphere that has 
same area as the surface projection area (Ap): 

 
R15 = Mc*Rp 

 

Multiplication of the Mean curvature with the Radius  Rs of a sphere that has 
same area as the surface area (As): 

R16 = Mc*Rs 

Multiplication of the Mean curvature with the ratio between the surface 
volume Vs and the surface projection area Ap: 

R17 = Mc  
V𝑠

Ap
 

Multiplication of the Mean curvature with the ratio between the surface 
volume Vs and the surface area As: 

R18 = Mc  
V𝑠

As
 

Multiplication of the Gaussian curvature and the surface projection area Ap: R19 = Gc*Ap 

Multiplication of the Gaussian curvature and the surface area As: R20 = Gc*As 

Multiplication of the Absolute curvature with the Radius Rp of a sphere that 
has same area as the surface projection area Ap: 

R21 = Ac*Rp 

Multiplication of the Absolute curvature with the Radius Rs of a sphere that 
has same area as the surface area As: 

R22 = Ac*Rs 

Multiplication of the Absolute curvature with the ratio between the surface 
volume Vs and the surface projection area Ap: 

R23 = Ac  
Vs

Ap
 

Multiplication of the Absolute curvature with the ratio between the surface 
volume Vs and the surface area As: 

R24 = Ac  
Vs

As
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Positive curvature R25 =  
N𝑝

N
 

Negative curvature: R26 =  
N𝑛

N
 

Zero curvature: R27 =  
N𝑧

N
 

Average normal: 

R28 

=√X2 + Y2 +  Z2 

𝑋 =  
1

𝑝
∑ 𝑋𝑎𝑖

𝑝
1 ,   𝑌 =

 
1

𝑝
∑ 𝑌𝑎𝑖

𝑝
1 ,   𝑍 =

 
1

𝑝
∑ 𝑍𝑎𝑖

𝑝
1  𝑁𝑎𝑖 =

(𝑋𝑎𝑖 , 𝑌𝑎𝑖 ,  𝑍𝑎𝑖) 

Ratio between the surface area and the area of the objects: R29 =  
As

Ao+ As
 

Ratio between surface and object Bounding Box volumes: R30 =
V

Vo+ V
   

Ratio between surface volume and object Bounding Box volume: R31 =  
Vs

Vo+ Vs
 

Ratio between the smallest plane of the surface MBB (A3)  and the plane of 
the object BB parallel to it (Ao1): 

R32 =  
A3

Ao1+ A3
 

Ratio between the second biggest plane of the surface MBB (A2) and the 
plane of the object BB parallel to it (Ao2): 

R33 =  
A2

Ao2+ A2
 

Ratio between the biggest plane of the surface MBB (A1) and the plane of the 
object MBB parallel to it (Ao3): 

R34 =  
A1

Ao3+ A1
 

Ratio between the diagonal of the surface bounding box D and the diagonal 
of object Bounding Box: 

R35 =  
D

Do+ D
 

Distribution of the normal: R36 =  
1

𝑘
∑

𝑑𝑜𝑡(𝑁𝑎,𝑁𝑎𝑜𝑖)

|𝑁𝑎| |𝑁𝑎𝑜𝑖|
𝑘
1  

 

 

Clearly this list of surface parameters is only a subset of the possible surface parameters, they have 

been chosen because they are somehow extending the geometric quantities used for curves 

straightness in the 3D space for surfaces. Again, those 36 parameters will finally be the only ones 

which will be used to characterize the free form surfaces and find rules/relationships with their clas-

sifications. Thus, we have tried to be quite exhaustive, knowing that the available MLTs will also help 

identifying the parameters which best influence the classification. In addition, the use of parameters 

to characterize the surrounding and its influence over the perception of flatness was not treated for 

curves. It is therefore a complementary part that enriches the understanding of the perception of 

aesthetic properties of surfaces.  

2.4 Fast classification of surfaces by carrying out interviews within a dedicated GUI 

The third element of the framework and the second column of the temple is the classification of all 

instances (Figure 1.1) of the IDS. Before starting with this process, the classification classes of flatness 

need to be defined. The number of classes has to be, in some way, a compromise between a very 

fine classification aimed at extracting as much information as possible from the interviewees and a 

limited one to avoid confusing the participants. In other words, if we propose two classes (e.g., flat 

and not flat) we will not be able to extract any relevant and significant information or classification 
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patterns. This would provide very poor and irrelevant knowledge because only a very limited set of 

the instances would be classified as flat and the remaining part would be classified as not flat (de-

pending on the IDS). The other extreme situation would be if we proposed 5 or more classifications. 

In this case, the participants would be confused and unable to distinguish the difference between 

some classes. Therefore, in this research, we decided to propose four classes, which we believe is the 

optimal number considering our experimentations. The next important aspect of defining the classi-

fication classes is their naming, which has to be intuitive to the layperson’s perceptions. Thus we 

opted for quantitative judgments (e.g. less, almost, more, very, not, or not at all) of these classes of 

flatness. As a conclusion, the four levels of classification of flatness are: Flat, Almost Flat, Not Flat, 

and Very Not Flat. Of course, this can be seen as a parameter and the proposed approach could be 

set up with more classes or with classes having other names. 

To easy and speed up the classification process, a GUI (Guiding User Interface) has been created in 

Matlab. The classification of the instances corresponds to the right pillar of the temple as described 

in Figure 1.1. It allows the user to classify surfaces in a very intuitive and simple way, i.e. by only mov-

ing a slider and clicking buttons. Effectively, in this work, it was reasonably not possible to ask the 

user to classify the 8550 instances one by one.  

The GUI is split into two parts: the visualization part (red frames) and the control part (blue frame). 

The visualization top part contains three windows displaying the under classification surface (middle 

window), the latest classified (left window) and the successive one (right window) in the isometric 

view. The display of the immediately preceding and successive surfaces allows participants to com-

pare them to decide about the changes of the class. The lowest visualization frame presents the un-

der classification surface from the three standard views, helping the interviewees to understand the 

surface shape and consequently to decide the class to associate. The controlling part also contains 

the principal and secondary frames. The principal frame consists of a slider and six buttons: four for 

associating the class and two for moving to the previous and to the successive surfaces. To speed up 

the classification process, the user does not have to classify each surface, but only those correspond-

ing to a change of the actual class that is the last attribute selected. This is a key point of the pro-

posed classification techniques which allows the classification of several thousands of instances in 

very few minutes. Practically, the interviewee classifies the first surface in one of the four classes, 

automatically this class is associated to all the successive surfaces. Then the user can move to the 

next surface and if he/she considers that the surface still belongs to the same class of the previous 

one, then there is no need to click on the appropriate button. The slider allows browsing the surface 

set under investigation allowing to browse within the same surface category (same color under the 

slider) or to check the surfaces corresponding to change in the classes, i.e. the ones where there is a 

color change. The bottom part allows to get the input (i.e.to chose one of the nine sets depicted in 

Figure 2.5) and to save the results of the classification process. In case the interviewee changes 

his/her mind about some classification and wants to repeat the classification of a given portion of 

surfaces, the classification can be repeated by clicking on the buttons Undo or Redo. 
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Figure 2.8: Workbench for the flatness classification of surface 

The classification has been conducted by interviewing participants from three different countries 

(France, Italy, and Macedonia) and with different backgrounds (engineers, mathematicians, students, 

PhD candidates, researchers, and so on). The composition of the participants is given in Table 2.4 

together with some figures which characterize them as well as the time they spent to perform the 

classification. At the end of the interviews, the 8550 instances have been classified by the 65 partici-

pants. Said differently, each instance has been classified 65 times. Of course, the participants do not 

have the same feeling and the instances are therefore not classified in the same way. 

Table 2.4: Structure of interviewed sample 

Place Number of 

participants 

Status Sex 

(M/F) 

Age 

range 

Common com-

ments 

Average 

duration 

France 20 

PhD student – 11 

Masters – 4 

Engineers – 5 

15/5 23 – 33 

Very well done 

 

Time consuming 

20 – 45 

minutes 

Italy 15 

PhD degree – 7 

Researcher – 7 

Technical staff – 1 

7/8 25 – 54 

Good interface 

 

Too many views 

confuse the 

interviewees 

35 – 60 

minutes 

Macedonia 30 

PhD degree – 5 

Engineers – 17 

Students – 8 

25/5 21 – 51 

Interesting 

 

Time consuming 

30 – 50 

minutes 

3 Experiments 

Now that the framework has been set up, several experiments can be conducted to answer to four 

main questions: 1) Is there a common perception of the flatness, 2) Is the amount of surrounding 

influencing the perception of flatness?, 3) Is the type of surrounding influencing the perception of 

flatness?, 4) What are the most relevant attributes to characterize the flatness? Before detailing the 
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fours studies which have been designed to answer those questions, the adopted methods are first 

introduced. 

3.1 Grouping instances of the IDS  

In order to conduct the studies and answer the four questions, the IDS and associated sets of Figure 

2.5 have been further decomposed. Table 3.1 details how the decomposition has been performed 

and the studies for which the groups have been designed. For example, Group 2 gathers together all 

the surfaces which have no context, i.e. 2850 instances, to be used for the second study, i.e. to an-

swer the question 2) Is the amount of surrounding influencing the perception of flatness ? 

Table 3.1: Decomposition of the IDS in seven groups 

Group ID Group type Sets of surfaces Nb of instances Studies 

1 All the surfaces 1 to 9 9 x 950 = 8550 1 and 4 

2 Without context 1, 3 and 8 3 x 950 = 2850 2 

3 Smaller context 4, 5 and 7 3 x 950 = 2850 2 

4 Greater context 2, 6 and 9 3 x 950 = 2850 2 

5 Car door 5, 8 and 9 3 x 950 = 2850 3 

6 Car back 3, 6 and 7 3 x 950 = 2850 3 

7 Coffee machine 1, 2 and 4 3 x 950 = 2850 3 

3.2 Identifying the best learning algorithm 

There exist a huge amount of learning algorithms (classifiers) which all have their own characteristics 

and capabilities to solve specific problems. In order to avoid testing all the algorithms for the four 

studies, it has been decided to first identify what could be considered as the best classifier in our 

context. Thus, the seven groups of classified instances introduced in section 3.1 have been intro-

duced in five classifiers: classification tree (C4.5), Naïve Bayes (NaiveBayes), Support Vector Machine 

(SMO), k-nearest neighbors (IBk) and classification rules (RIPPER). The results are shown in Figure 3.1. 

The percentages are the average of the percentages of well-classified instances obtained when train-

ing a distinct classifier for each participant and using the 10 folds cross-validation strategy. For exam-

ple, using the 8550 instances classified by the 65 participants (group 1), and using the classifier C4.5 

for each participant separately with 10 folds cross-validation, we obtained 65 percentages whose 

average is equal to 83.31%. The same applies for the other groups and classifiers. At the end, the 

C4.5 classifiers appear to be the best to solve our classification problem. Only this algorithm will be 

used for the next experiments. 

 
Figure 3.1: Selection of the best classifiers  
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3.3 Handling multi-label classification  

As explained at the end of section 2.4, the 8550 instances of the IDS have been classified 65 times. In 

other words, multiple (i.e. 65) class labels have been assigned to each instance. In order to keep use 

of basic learning techniques and do not make use of multi-labeled classification techniques, two 

methods have been designed and tested throughout the four studies : 

1) Use of a general classification (Method 1) obtained using the majority principle. The problem 

of dealing with multiple labelled dataset of instances can be solved by replacing the multiple 

labelled classifications with a single labelled classification by using the majority principle. In 

our case, it represents the perception of flatness of the majority of participants. For instance, 

if a surface has been classified as flat by more than 33 out of 65 participants, then this class is 

chosen as the final surface class. Following this principle, the final class of some surfaces can 

be automatically defined. This is illustrated on Figure 3.2. For example, the surface 1 has 

been classified as flat (F) by 36 participants, as Almost Flat (AF) by 14 participants and so on. 

Thus, using the majority principle, this instance can be classified as Flat (F).  

 
Figure 3.2: Assigning a final class to a surface using the majority principle  

However, following this principle, some instances remain unclassified. Actually, one of the 

most important rules followed during the generation of the sets of surfaces is the continuity 

in the modification of the shapes for the creation of the intermediate surfaces. This means 

that if the surface k is classified as class1 and surface k+2 is classified in class2 then the sur-

face in between the two (i.e. surface k+1) must belong either to class1 or class2. Therefore, if 

surface k+1 cannot be associated to a class by the majority of participants, then the surface 

should be classified as some of the neighbor surfaces. Neighbor surfaces are the nearest 

neighbor surfaces that are classified with a final class by using the majority principle. For in-

stance, 30 participants have classified the surface 2 as Flat (F) and 25 as Almost Flat (AF), thus 

surface 2 can be classified as Flat (F). 

 

Following those two principles, we obtained a general single labelled classification that will 

be used in the following studies. 

 

2) Use of mutual comparisons (Method 2) between the classifications of the participants. Here, 

the idea is to transform the multi-labelled classification problem in a set of n(n-1) mutual 

comparisons between individual classifications (n=65 in our case). For example, the classifica-

tion of the participant k is first used to find the classification rules of participant k. Then, the 

classification rules of participant k are applied to the instances classified by the (n-1) other 
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participants. Following this method, a comparison can therefore be performed to understand 

how much the classification of participant k is shared by the other (n-1) participants. This 

method will be exemplified in the next subsection.  

Finally, to be able to manage the results and be more synthetic, some of the percentages will be av-

eraged. For example, instead of showing 64 percentages to characterize how much 64 participants 

have the same understanding of a given participant, it will be possible to average them so as to con-

clude globally how much the understanding of this participant is shared by the 64 others. 

3.4 Study 1 : Is there a common perception of flatness ? 

The investigation on the existence of a common perception of flatness can be carried out by evaluat-

ing the differences between the individual classifications and a general classification model, or by 

carrying out n(n-1) mutual comparisons between the individual classifications. For this study, the 

8550 instances of group 1 are to be used (Table 3.1). 

3.4.1 Method 1 : Use of a general classification  

This approach consists in first extracting a general classification model and then testing it with the 

classification of the interviewees to estimate how representative the general classification is. In this 

case, the dataset of surfaces classified according to the general classification (method 1 introduced in 

section 3.3) is used to train a classifier, and then the trained classifier is tested with the dataset clas-

sified by the interview participants. As discussed in section 3.2, the learning algorithm C4.5 (classifi-

cation tree) has been used to train the classifier.  

The comparison of the classification of all participants with respect to the general classification is 

given in Figure 3.3. For example, when using the classifier (classification tree) built from the general 

classification on the dataset classified by the first participant, the percentage of well classified in-

stances is 67.7%.  

 

Figure 3.3: Comparison between the classification of 65 interviewees and the one obtained using the general 

classification model 

Taking into account the accuracy of all participants, the average accuracy is 52.7%. If we rank the 

classification of all participants by accuracy and take the top-ten ranked classifications (red numbers), 

we can see that their average accuracy is 66.3%. Additionally, the highest accuracy, i.e. participant 22 

with accuracy of 71.7%, indicates the participant who share the most similar classification rules to 

the ones of the general classification. 

Method 2 : Use of mutual comparisons To understand if the classification rules followed by a person 

are also shared by the others, a mutual comparison is carried out by using the classification of each 
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participant to train a classifier (still using C4.5 classification tree), then the obtained classifier is test-

ed using the classifications of the other 64 participants and finally the results of the testing are used 

for the comparison. This process is repeated for the 64 other participants, and the results are given in 

Figure 3.4. For example, when the classifier trained on the classification suggested by participant 1 is 

applied on the dataset classified by participant 2, the accuracy is 48.0%.  

Overall, the average accuracy for the classifier of participant 1 applied on the other 64 participants is 

48.4%. The average accuracy of the classification model for a participant can be considered as an 

overall and orientation measure for the “level of share-ability” of the classification for this partici-

pant. 

 

Figure 3.4: n(n-1) mutual comparisons of individual classifications 

The average accuracy of all the participants is given in Figure 3.5. Taking into account the average 

accuracy of all participants, the overall average accuracy is 42.1%. If we rank the classification of all 

participants ordered by their average accuracy and take the top-ten ranked classifications (red num-

bers), we get an average accuracy of 47.76%.  

 

Figure 3.5: Average accuracy of all the participants when using n(n-1) mutual comparisons  

The two methods can now be compared to answer the initial question of this first study, i.e. is there 

a common perception of flatness ? The Figure 3.6 highlights the ten top-ranked classifications when 

following the two methods, i.e. the n(n-1) mutual comparisons of method 1 and the comparisons to a 

general classification of method 2. Here, one can notice that 8 classifications are in the 10 top-ranked 

classifications of the two methods, thus there is a 80% overlap. As a conclusion, the general classifi-

cation can be considered as relevant to express a common perception of flatness. Furthermore, con-

sidering that the n(n-1) mutual comparisons indicate how much provided classifications are recog-

nized by the others, they can also help in defining the relevant attributes (see study 4 in section 3.7).  
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Figure 3.6: Parallel between the ten top-ranked classifications when using the mutual comparisons (left) and 

comparisons to a general classification (right)  

3.5 Study 2 : Is the amount of surrounding influencing the perception of flatness ? 

The investigation on the influence of the amount of surrounding on the perception of flatness can be 

carried out following the two previously introduced methods. For this study, the 8550 instances of 

the IDS are still used but split in three groups 2, 3 and 4 of 2850 instances each (Table 3.1). Being the 

two methods already introduced and applied for the study 1, there will be less details in this section. 

The main hypotheses which have driven the reasoning is as follows. If the surrounding does not af-

fect the perception of flatness, then the participants will follow the same classification rules for the 

same surfaces regardless the surrounding. On the contrary, their classification rules will be affected 

in case the surrounding has an influence in the perception of the surface flatness. 

 

Figure 3.7: Comparison of the individual classifications with general classification models and according to 

different amounts of surrounding contexts (without, smaller and greater contexts) 

Following the first method, i.e. comparison to a general classification model, three general classifica-

tion models are created and then applied on the classification of each participant. The three general 

classification models refer to the three groups used in this study, namely group 2 – without context, 

group 3 with a smaller context and group 4 with a greater context. They are created using the majori-

ty voting principle as explained earlier. Figure 3.7 shows the results for the accuracy obtained for the 

three groups. For example, when the general classification created for group 2 (without context) is 

applied on the instances of this group 2 classified by the participant 1, an accuracy of 64.2% is ob-

tained. Once the three general classification models have been tested for the 65 participants, the 

average accuracies can be computed (last column of Figure 3.7). This result indicates that the aver-

age accuracy of the classification of the shapes without context is 51.4%. It also shows that when the 

size of the context increases (smaller and greater contexts), the classification accuracy increases 
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(52.2% and 54.3%, respectively). Such an ordering of the accuracies confirms our hypothesis that the 

surrounding context influences the perception of flatness. Actually, the amount of surrounding in-

formation is correlated to the strength and consistency of the classification among individuals. 

Following the second method, i.e. using n(n-1) mutual comparisons, the same order of the classifica-

tion accuracy is obtained (Figure 3.8). For example, the accuracy of 86.51% is an average value com-

puted from the accuracies obtained when testing the classifier (C4.5 classification tree) learned from 

group 2 (without context) on the same group 2 classified by the 65 participants. The results show 

that the average accuracy (88.67%) of the classifiers trained and tested on group 4 (greater context) 

is greater than the average accuracy (88.26%) of the classifiers trained and tested on group 3 (smaller 

context) which is greater than the average accuracy (86.51%) of the classifiers trained and tested on 

group 2 (without context). Again, this result validates what has been also concluded with method 1, 

i.e. by increasing the context the perception of flatness became more stable.  

 

Figure 3.8: Mutual comparisons according to different amounts of surrounding contexts 

3.6 Study 3 : Is the type of surrounding influencing the perception of flatness ? 

The investigation on the influence of the type of surrounding on the perception of flatness will also 

follow the two previously introduced methods. For this study, the 8550 instances of the IDS are still 

used but split in three groups 5, 6 and 7 of 2850 instances each (Table 3.1). 

In this study, the idea is to analyze whether not only the amount but also the type of surrounding 

influences the perception of flatness. For instance, when a participant classifies a set of surfaces with 

a different amount of surrounding but for a same object (e.g. the coffee machine), he/she will intui-

tively follow classification rules. However, these classification rules might differ greatly from those 

he/she would follow when classifying surfaces belonging to other shape environments and objects 

(e.g. the car door and car back).  

 

Figure 3.9: Comparison of the individual classifications with general classification models and according to 

different types of surrounding contexts (car door, car back and coffee machine) 



 

23 
 

Following the first method, i.e. comparison to a general classification model, three general classifica-

tion models are created and then applied on the classification of each participant. The three general 

classification models refer to the three groups used in this study, namely group 5 (car door), group 6 

(car back) and group 7 (coffee machine). They are created using the majority voting principle as ex-

plained earlier. Figure 3.9 shows the results for the accuracy obtained for the three groups. For ex-

ample, when the general classification created for group 5 (car door) is applied on the instances of 

this group 5 classified by the participant 1, an accuracy of 54.7% is obtained. Once the three general 

classification models have been tested for the 65 participants, the average accuracies can be com-

puted (last column of Figure 3.9). These results indicate that the average accuracy of the classifica-

tion of the shapes for the car door is 47.8%, while the average accuracy of the classification for the 

car back is 53.2%, and the accuracy of the classification for the coffee machine is 57.4%. Thus, there 

is a quite large difference between the average accuracies for the car door (47.8%) and the coffee 

machine (57.4%).  

Following the second method, i.e. using n(n-1) mutual comparisons, similar results have been ob-

tained (Figure 3.10). The accuracy value of 81.79% is the average value of the accuracy of testing 

group 5 on itself for all 65 participants. The results show that the average accuracy of the classifiers 

trained and tested on group 7 (93.16%) is quite different from the average accuracy of the classifiers 

trained and tested on group 6 (89.53%) which is also quite different from the average accuracy of the 

classifiers trained and tested on group 5 (81.79%).  

 

Figure 3.10: Mutual comparisons according to different types of surrounding contexts 

Finally, the results obtained when applying the two methods, i.e. comparison to the general classifi-

cations and n(n-1) mutual comparisons, are consistent and do validate the fact that the type of sur-

rounding does influence the perception of flatness. Furthermore, let us define the sharpness of a 

transition between the classified surface and its surrounding surfaces using the angles between the 

average normal vector and the surrounding average normal vectors (Figure 3.11). When comparing 

the three types of surrounding contexts, it clearly appears that the more the transition between the 

classified surface and its surrounding is sharp, the more the accuracy of the trained classifiers in-

creases. Thus, participants better classify the surfaces when they are surrounded by surfaces con-

nected with sharp edges. 

 

Figure 3.11: Influence of the sharpness on the accuracy of the classifiers 
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3.7 Study 4 : What are the most relevant attributes to characterize the flatness ? 

To answer this question, the group 1 containing the 8550 instances is used (Table 3.1). Again, the two 

previously introduced methods are to be used and compared.  

To solve the problem of identifying which surface parameters (among the 36 parameters introduced 

in section 2.3) best characterize the flatness property, the Attribute Selection (AS) approach has been 

adopted. AS allows the identification of which attributes can be omitted without affecting the results 

of further classifications. The adopted technique uses a correlation-based algorithm to evaluate the 

correlation of various subsets of attributes with the given classification. Then, it applies appropriate 

search algorithms to rank and propose the best subset of attributes, among the entire set of parame-

ters that are highly correlated to the classification but independent to each other.  

Following the second method, i.e. using n(n-1) mutual comparisons as previously introduced, the AS 

method has been successively applied over the 65 single labelled datasets to select for each dataset 

the subset of parameters which best influence the classification of the associated participant. Then, 

the most recurring ones have been identified by counting the number of times that one parameter is 

selected. Those results are shown in Figure 3.12. For example, we can see that the parameter 1 (i.e. 

the ratio As/Ap as defined in section 2.3) is ranked second most influencing parameter among the 36 

parameters. This parameter appears in 42 lists of most influencing attributes of the 65 participants. 

Finally, following the second method, the top-seven most influencing parameters are the parameters 

2, 1, 28, 4, 17, 36 and 25.  

 

Figure 3.12: Relevant attributes/parameters ranked according to the number of times their appear in the list 

of most influencing parameters of all participants 

Following the first method, i.e. the comparison to a general classification model, similar results have 

been obtained. In this case, the top-seven most influencing parameters are parameters 1, 2, 4, 8, 17, 

28 and 36.  

Thus, there is a clear overlap of 80% of the top-seven best-ranked attributes obtained with the two 

methods. Actually, only the parameter 25 for the second approach and the parameter 8 for the first 

method do not match. Said differently, the six attributes listed in Figure 3.13 correspond to the most 

relevant and commonly shared attributes which best characterize the classification of the 65 partici-

pants. Thus, modifying those attributes of a given surface may affect significantly the judgment of 

flatness.  
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Figure 3.13: Selection of the most relevant parameters 

4 Conclusion and future works 

The advent of low cost 3D printing and Flexible Manufacturing Systems (FMS) allowing the produc-

tion of personalized products is opening the possibility to normal customers to become themselves 

designers of their products. Current CAD technologies are not suitable for general customers. The so-

called declarative modelling allowing the shape generation and modification through set of com-

mands easily understandable would be a suitable way to define more customer-oriented shape 

modelling capabilities. The realization of such an approach is possible only if easy and generally un-

derstandable terminology of shape properties and modelling operations can be identified. In this 

perspective, this paper addresses the verification of a common perception and judgment of a specific 

surface shape property, the so-called flatness, together with the identification of the concerned 

shape characteristics. This is performed through the set up and use of a general framework exploiting 

Machine Learning Techniques for the detection of hidden classification rules and the selection of the 

most prominent involved parameters. A supervised learning approach has been applied, using the 

results of surface classification sessions carried out in three different countries. Considering that the 

surface shape perception can be affected by its surrounding (adjacent shape behavior and extension) 

and context (object in which the surface is inserted), surfaces in different types of objects and with 

different types and extensions of the neighboring surfaces have been considered. The results ob-

tained even if promising are indicating some differences in the perception of flatness quality. Addi-

tionally, it resulted that considering the flatness of a surface embedded in a shape reduces these 

differences, and in particular, the differences diminish when increasing the extension of the sur-

rounding shape and the shape differentiation between the surface and the surrounding. This aspect 

is important since in the foreseen modelling scenario, the user should modify a part of the object and 

not a single surface out of its context, thus more generally valid rules can be determined. Even if we 

considered a large number of surfaces, additional tests should be carried out with more surfaces and 

more contexts (surrounding shapes and products) to confirm the prediction capabilities of the de-

tected rules and of the importance of the extracted geometric properties. Future work would also 

include the consideration of geometric properties more distributed along the surface to detect other 

possible significant parameters for the flatness characterization. Finally, to actually implement the 

declarative modelling approach for non-expert designers, modelling operators should be defined and 

developed able to modify the surfaces through changes of such parameters.   
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