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Abstract.

We propose and analyze optimal additive multilevel solvers for isogeometric discretizations of scalar elliptic
problems for locally refined T-meshes. Applying the refinement strategy in [32] we can guarantee that the
obtained T-meshes are p-admissible, which implies that the associated T-splines are analysis suitable.
Taking advantage of the multilevel structure of p-admissible T-meshes, we develop a BPX preconditioner
on the basis of local smoothing only for the functions affected by a newly added edge by bisection, and
prove that our method has optimal complexity. Several numerical experiments confirm our theoretical result
and also show the practical performance of the proposed preconditioner.
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BPX preconditioners for isogeometric analysis
using analysis-suitable T-splines

Durkbin Cho* Rafael Vazquez!

Abstract

We propose and analyze optimal additive multilevel solvers for isogeometric discretizations
of scalar elliptic problems for locally refined T-meshes. Applying the refinement strategy in
[32] we can guarantee that the obtained T-meshes are p-admissible, which implies that the
associated T-splines are analysis suitable. Taking advantage of the multilevel structure of p-
admissible T-meshes, we develop a BPX preconditioner on the basis of local smoothing only
for the functions affected by a newly added edge by bisection, and prove that our method has
optimal complexity. Several numerical experiments confirm our theoretical result and also show
the practical performance of the proposed preconditioner.

1 Introduction

The analysis and development of adaptive schemes is one of the most active areas of research in the
context of isogeometric analysis (IGA), a recent methodology for the solution of partial differential
equations with high continuity splines. The main idea of adaptive methods is to obtain a good
accuracy of the solution with less computational effort by applying local mesh refinement, hence
adaptive IGA schemes require the use of different spline spaces that break the tensor-product
structure of B-splines. The most popular alternatives in the IGA research community are T-splines
[36], LR-splines [19, 28] and hierarchical splines [38].

In particular, in this paper we focus on T-splines, introduced by Sederberg et al. in [36] and
applied in IGA for the first time in [2, 22]. T-splines are constructed from a T-mesh, a rectangular
tiling with hanging nodes, and T-spline blending functions are defined from their local knot vectors,
which are computed from the tiling. The mathematical research on T-splines has been very active
in recent years, and it has led to the introduction of analysis-suitable (or dual compatible) T-splines
[31, 4, 5, 30], a subset of T-splines with good approximation properties that provide local linear
independence.

A standard adaptive scheme based on mesh refinement can be written in a loop of the form [15]

SOLVE — ESTIMATE — MARK — REFINE,

and suitable strategies for all the steps of the adaptive scheme are needed in order to guarantee
its efficiency. Numerical tests show that traditional a posteriori estimators and marking strategies
from finite elements can be adapted to IGA with good results, see for instance [22] and [13]. Local
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refinement strategies for T-splines were first studied in [35], but up to our knowledge the only local
refinement strategy that has been proved to be optimal is the one in [32], which is based on refining
elements by bisection, alternating the refinement direction.

In this paper we focus on the solution of the linear system arising in the SOLVE module for
T-splines, and study the optimality of a suitable BPX preconditioner. Several domain decomposi-
tion preconditioners have been recently studied in the IGA context: overlapping Schwarz methods
[8], balancing domain decomposition by constraint (BDDC) methods [7, 3] and dual primal isogeo-
metric tearing and interconnecting methods [29, 33]. Multilevel preconditioners for IGA have been
extensively analyzed in the tensor-product setting: the BPX preconditioner in [14], and multigrid
preconditioners [23, 25, 26, 24, 21].

The T-splines obtained with the refinement strategy in [32] are analysis-suitable by construction,
and present a multilevel structure, which makes them very appealing to apply multilevel precondi-
tioners. In the present paper, we first present theoretically optimal multilevel preconditioners for
IGA on locally refined T-meshes, extending the results in [14] to T-splines.

For the study of the optimality of the BPX preconditioner we follow [15], writing the precondi-
tioner in the framework of the parallel subspace correction (PSC) method. In this framework, the
optimality follows from two basic properties: a stable space decomposition, and the strengthened
Cauchy-Schwarz inequality. The proof of these two properties is the core of this work, and as a
consequence we obtain that the BPX preconditioner gives a uniformly bounded condition number,
which is independent of the mesh size h, but depends on the degree p as in [14].

The construction of the BPX preconditioner as in [15] is performed by adding a new edge to
the T-mesh by bisection, and the new level is defined by the functions appearing or modified by
the insertion of this edge. An alternative construction is also proposed, adding all the edges of the
same generation at once, and defining the functions of the new level as those appearing or modified
after the insertion of all edges. The theoretical optimality for this alternative construction, that
we name macro decomposition, follows from the previous one, but the numerical results show an
improved performance.

The paper is organized as follows. In Section 2, we introduce the framework of parallel subspace
correction (PSC) method and present its convergence theory based on the two properties mentioned
above. We briefly review the basics of univariate/multivariate B-splines in Section 3. In Section 4,
we give a new definition of T-meshes by bisections and discuss p-admissible T-meshes and their
fundamental properties as in [32]. In Section 5, we construct a space decomposition on p-admissible
T-meshes and then prove that the two aforementioned properties are satisfied. In Section 6 we ob-
tain the optimality result for the BPX preconditioner, and also deal with the macro decomposition,
showing that is also an efficient space decomposition for the purpose of implementation. Some
numerical results that validate our theory are presented in Section 7.

2 Preliminaries

2.1 Problem setting

We are interested in the second order Laplacian with homogeneous Dirichlet boundary conditions,
—Au=f in Q, u=0 on 09, (1)

where 0 denotes the boundary of Q and f € L?(f2). The isogeometric approximation to the
solution of (1) is the function u € V such that

a(u,v) = (f,v) YveV



where

a(u,v) /Vu Vv dz, (f,v) /f’udx

and V is the isogeometric discrete space. Defining a linear operator A :V — V by
(Au,v) = a(u,v), Yu,v €V
and also b € V by (b,v) = (f,v), Vv € V, we have to solve the linear operator equation
Au=1»

for some u € V.

In the rest of the paper, we will adopt the following compact notation. Given two real numbers
a,b we write a < b, when a < Cb for a generic constant C' independent of the knot vectors (defined
below), and we write a ~ b when a < b and b < a.

2.2 Iterative methods

Iterative schemes for the solution of Au = b can be written in the form
W =uF B — AWY), k=0,1,2,..., (2)

starting from an initial guess u® € V. The core of the iterative methods is the iteration matrix B,
which is an approximate of the inverse of A. In case of being symmetric positive definite (SPD), the
iteration matrix B can be used as a preconditioner of A for iterative methods. The preconditioned
conjugate gradient (PCG) method can be understood as a conjugate gradient method applied to

the preconditioned system
BAu = Bb,

Let u*, k =0,1,2,..., be the solution sequence of the PCG algorithm. Then the following error

estimate is well-known:
BA-1\"
K‘/ —
!W—UWAS2<>\W—UWm

VK(BA) +1

which implies that the PCG method converges faster with a smaller condition number x(BA).

2.3 The method of parallel subspace corrections

The method of parallel subspace corrections (PSC) provides a particular construction of the itara-
tion matrix B. The starting point is a suitable decomposition of V:

where V; are subspaces of V. The model problem (1) can be split into sub-problems in each V; with
smaller size. Throughout this paper, we use the following operators, for i =0,1,...,J:

e Q; : V —V; the projection in the inner product (-, -);

e [, : V; — V the natural inclusion;



e A, :V; — V; the restriction of A to the subspace V;;
e R;:V; — V; an approximation of A;l.

This method performs the correction on each subspace in parallel. In operator form, it reads
like (2) with the iteration matrix defined by

J
B:=)Y LRI (=) RQi). 3)
=0 )

The corresponding error equation reads
J
u—uft = 1 - (ZLRZJ;)A] (u — u®).
i=0

The convergence analysis of (PSC) is based on the following two important properties [15]:
(A1) Stable Decomposition For any v € V, there exists a decomposition v = Z;']:o Vi, U €
Vi, ©=0,...,J such that

J
D Ml < Killola
i=0
(A2) Strengthened Cauchy-Schwarz (SCS) inequality For any u;,v; € V;,i =0,...,J
J J J 2 , g 1/2
S | < o (z uum) (z uwna) |
=0 j=i+1 i=0 i=0

For a space decomposition satisfying both properties, one can prove the following result on the
preconditioned linear system [15]:

Theorem 2.1 LetV = ZiJ:O V; be a space decomposition satisfying (A1) and (A2), and let R; be
SPDs fori=0,...,J such that

K will3 < (R i, wi) < Kslug| (4)
Then B defined by (3) is SPD and
k(BA) < (1+2K9)K1K3Ky. (5)
The goal of the paper is the construction of a preconditioner like (3) for T-splines, and the proof
that (A1) and (A2) are satisfied.
3 Splines

In this section we recall the definition and main properties of B-splines, mainly to fix the notation.
For a more extensive description on the use of splines in isogeometric analysis, the reader is referred
to [27, 16], and to [6] for a mathematical perspective.



3.1 Univariate B-splines

Given two positive integers p and n, we say that = := &, ..., {n4p is a p-open knot vector if

0= =""=E<Hn < <1 <&=:-=&4p=1,

where repeated knots are allowed. From the knot vector Z, univariate B-spline basis functions of
degree p are defined recursively using the Cox-De Boor formula (see [17]). The definition of each
B-spline B;,, ¢ = 0,...,n — 1, is determined by a p + 2 local knot vector Z; , = {&, ..., &i+pt1}-
Whenever necessary, we will stress it by adopting the following notation:

Bip(¢) = BEipl((), ¢ €(0,1).

Thus, the basis function B;, has support

supp(Bip) = [&is itpr1]-

Let us select from = a subset {§;,,k = 0,..., N} of non-repeated knots, or breakpoints, with
o, = 0, &y = 1. We point out that the local mesh size of the element I} = (&;,,&;,,,) is called
hy = &, — &, for k=0,..., N —1. Moreover, to the element I}, = (§;,,&;,,,), that can be written

as (&,&;+1) for a certain j, we associate the support extension fj defined by

I := (&-ps Ejpr1)- (6)
We denote by
Sp(E) :=span{B;,,i =0,...,n —1}.

the univariate B-splines space spanned by those B-splines of degree p. The functions B;, are a
partition of unity, as shown in [34].

Following [34, Theorem 4.41], we define suitable functionals \; , = A&, ..., &j4pt1], for 0 < j <
n — 1, which are dual to the B-splines basis functions, that is

Ajp(Bip) = 6ij, 0<4,j<n-1,

where 9;; is the Kronecker delta. The following estimate of the functionals A;, will be useful in the
sequel.

Lemma 3.1 If f € LY&;,&jqpr1), with 1 < g < +oo then

(D] S 1jpe1 = &7 Loty i amin)-

Proof. The proof can be found in [34, Theorem 4.41]. O
We note that these dual functionals are locally defined and depend only on the corresponding
local knot vector, namely,
Aip(f) = AEip)(f)-
Let II, = be the projection that is built from the dual basis as detailed in [34, Theorem 12.6],
that is,

n—1
Mpz: L2([0,1]) = 55(5),  Tps(f) =Y Xjp(f)Bip: (7)
§=0
Assumption 3.1 {&,,&,,..., &y} is locally quasi-uniform, that is, there exists a constant § > 1

such that the mesh sizes hy = &, ., —&;, satisfy the relation 01 < hi/higs1 <0, fork=0,..., N=2.



Proposition 3.2 For any non-empty knot span I, = (&, &), we have

HHpE(f)HB(Ik) < C||f”L2(fk)v

where the constant C depends only on the degree p. Moreover, if Assumption 3.1 holds, we have
M= ()l ) < C\f|H1(fk),

where the constant C depends only on p and 8 and H' denotes the classical Sobolev norm.

Proof. The proof can be found in [6, Proposition 2.2]. O

3.2 Multivariate splines

Multivariate B-splines can be constructed by means of tensor products. We discuss here the bivari-
ate case, the higher-dimensional case being analogous.

For d = 1,2, assume that ng € N, the degree pg and the pg-open knot vector Z4 = {£4.0, - - - {dnyt+py }
are given. We set the polynomial degree vector p = (p1,p2) and E = {Z1,E2}. We introduce a set
of multi-indices I = {i = (41,42) : 0 < ig < ng — 1} and for each multi-index i = (i1,42), we define
the local knot vector

— = =
Lp — {*—421,p1a~—422,p2}-

Then we can introduce the set of multivariate B-splines

{BLP(C) = B[Eh,pl](Cl)B[Elémz](C2)> for all i € I}'

The spline space in the parametric domain Q = (0,1)? is then
Sp(2) = span{Bip(¢), i€ T}.

We also introduce the set of non-repeated interface knots for each direction {4, ..., &4 Nd}’
d = 1,2, which determine the intervals Iy, = (gd,ijd7§d,ijd+1)> for 0 < j4 < Ng— 1. These intervals

lead to the Cartesian grid M? (or simply M) in the unit domain = (0,1)2, also called the Bézier
mesh:

MB = {QJ = Ile X 127]'2, for 0 § jd S Nd — 1}.
For a generic element Qj, we also define its support extension
Q5 = Ty X T2,
with I~d7j , the univariate support extension by (6).

3.2.1 Multivariate quasi-interpolants

We note that when the univariate quasi-interpolants are defined from a dual basis, as in (7), then
the multivariate quasi-interpolant is also defined from a dual basis. Indeed, we have

Mp=(f) = Y Aip(f)Bip, (8)

iel
where each dual functional is defined from the univariate dual bases by the expression

)‘i,P = )\ilvpl ® )‘iz,Pz'



4 T-splines

The main drawback of B-splines is their tensor-product structure, which prevents local refinement
as required by adaptive methods. One of the alternatives is the use of T-splines [36], a superset
of B-splines that allows for local refinement. The use of T-splines in IGA was first explored in
[2, 22], and it has led to a growing interest for the analysis of their mathematical properties. In
this section we are collecting mathematical results from [31, 4, 5] (linear-independence, dual basis
and projectors), [30, 12] (nestedness and space characterization) and [6, Section 7] (local linear
independence), following mainly the notation in [6].

We restrict ourselves to T-splines where refinement is always performed by bisection, and the
multiplicity is never reduced. A more general setting can be considered, but it would only add
technical difficulties without adding more insight.

4.1 T-mesh defined by bisection

As in the previous section, let us assume that we are given the degrees py, the integers ng and the
open knot vectors =4, and let us denote mg = ng + pg for d = 1, 2. For simplicity we assume that
the internal knots in =; are not repeated and equally spaced, so the element size in each parametric
direction can be denoted by h; and he. Our starting point is the index mesh 7 in the index domain
[0, m1] x [0,m2], defined as the Cartesian grid of unit squares

To={lj1,j1 +1] x[j2,jo+1]:j1=0,...,m1 —1; jo=0,...,mg — 1},

which is associated to the tensor-product B-spline space Sp(E).
To define T-splines by bisection, we start introducing, for any integer £ > 0 and for d = 1,2,
the set of rational indices
. 1 2f 1 1 ¢
;= 0,...,pd,pd—|—7 ...,pd—‘rT,pd-l—l,...,nd—1,nd—1+?,...,nd—1+

20 T7nd7nd+1w“7nd+pd}7

and we notice that Ig - Iﬁl if £ < ¢'. We also define the ordered knot vectors

—/ {
Zg = {gd,ka k € Id} = {gd,()) fd,la e agd,pda £d7pd+2ig’ o 75 2l_1, gd,nd) gdmd-‘rla o 7£d,nd+pd} )

4
dng—1+ Y
in a recursive way: starting from Eg = Zy, for £ > 0 and for any new index k € Iﬁ \Iﬁ_l, we define

the knot )

Edk = §(§d,k_2% + fd,k+§),
which is well defined because k — 2%, k+ 2%, € Iﬁ_l. Clearly, Eg C Eflﬂ for ¢ > 0, and the interval
size is hqe = hq/ 2¢. Notice that in this procedure we do not introduce new knots between the
repeated knots of the open knot vector.
We also define, for an arbitrary rectangular element in the index domain 7 = [k1, k1 + t1] X
[ka, ko +to], with indices kq, kq+tq € T, the following bisection operators (see [32, Definition 2.5]):

{lk1, k1 +t1/2] x [ka, ko + ta], [k1 + t1/2, k1 + t1] ¥, [ko, k2 +t2]} i &1y # E1kysta s

bisect, (1) = . if €15, = E1kyt0s
bisect, () = 4 Uk R1F ] Tray ke 22/2) [k Ry il Tk + 02/2 ke + o} i oy # Eaarn,
u(T) =19 if &2 1y = §2 ko tto-

Notice that the bisection operators split the element in two adding a vertical and a horizontal edge,
respectively, only when the corresponding length in the parametric domain is greater than zero,
that is, when §d7kd+td - gd,kd > 0.



Starting from the Cartesian grid 7y, we define a T-mesh T = Ty by successive applying bisection
of elements, in the form

Ter1=Te+0br,, TETH k=0,...,N -1, 9)
where we use the formal addition (see [32, Definition 2.6] and also [15, Section 3])
T + br, = Te \ {7} U bisect(7x), (10)

and the bisection operator can be either bisect, or bisect,. Moreover, we define the finest level A
as the minimum integer such that the dth coordinate of all vertices in the T-mesh 7 belongs to
74, for d =1,2.

Remark 4.1 We notice that a T-mesh defined with this procedure automatically satisfies the first
condition in the definition of admissible mesh in [6, Definition 7.10], that is, the first pg+ 1 lines
closer to each boundary are completely contained in the mesh. Instead, the second condition of not
having T-junctions in the so-called frame region is not satisfied, because T-junctions may appear
on the interface between the frame and the active region. In any case, these T-junctions do not
affect the definition of the T-spline functions, and the mesh can still be considered “admissible”.

4.2 Analysis suitable T-splines

To construct the blending functions associated to a T-mesh T, we have to define first the set of
anchors, that we denote by Ap(7), and that depends on the degree, see [6, Definition 7.13]. These
are either the set of vertices (p; and ps odd), elements (p; and ps even), horizontal edges (p; even,
p2 odd) or vertical edges (p; odd, ps even) in the active region, which is the rectangle

[[p1/2],ma = [p1/21] x [[p2/2],m2 — [p2/2]],

see the examples in Figure 1. We also define the horizontal (resp. vertical) skeleton of the mesh,
and denote it by hSk(7) (resp. vSk(7)), as the union of all horizontal (resp. vertical) edges
and vertices. The union of hSk(7) and vSk(7) will be called skeleton. Then, for each anchor
we construct an ordered horizontal index vector of p; + 2 indices, tracing a horizontal line from
the anchor and collecting the closest |(p1 + 2)/2] indices leftwards and rightwards where the line
intersects the vertical skeleton of the mesh, plus the index of the anchor if the degree is odd, see
[6, Definition 7.14] and Figure 1. A vertical index vector of ps + 2 indices is constructed in an
analogous way tracing a vertical line passing through the anchor.
Then, given an anchor A € A, (7) with horizontal and vertical index vectors

hop(A) = {i1, ... ip 2} CIP, vup(A) = {1, .., pssa} C I8, (11)
we define the local knot vectors
Ealp = (&L &Lipa CEY. and Zaop, = {&yis- 8240} C 5,
and from these local knot vectors we define the associated bivariate function
Bap(€) = BEA15:1(C1) B[EA2,(C2)-

We will denote by S(Ap(T)) =span{Ba p: A € A,(T)} the space generated by the T-splines.
A sufficient condition to guarantee linear independence of the T-spline functions is the dual
compatibility condition, introduced in [4, 5] and equivalent to the analysis-suitability condition



0 1 2 3 4 5 6 7 8 9 10 1 12 0 1 2 3 4 5 6 7 8 9 10 1 12

Figure 1: Computation of the index vector for two basis functions, for bicubic (left) and biquartic
(right) T-splines

in [30]. The former was generalized to arbitrary dimension in [6]. We say that two local knot
vectors overlap if both of them can be written as subvectors, with consecutive indices, of the same
global knot vector. Then we say that the T-mesh is dual compatible if for each pair of anchors
A’ A" € Ap(T), with A’ # A", there exists a direction d € {1, 2} such that the local knot vectors
EA’dp, and Ear g4, are different and overlap. See [6, Section 7.1] for details.

Assuming that the T-mesh is dual compatible, then the functionals

{Aap, A€ A(T)}, Aap = AEA1p] @ A[EA 2],

form a dual basis for {Bap: A € Ap(T)} (see [6, Proposition 7.3]). Moreover, we can build the
projection operator IT] =TI 4 (7 : L*(2) — S(Ap(T)) by

()¢ = Y. Aap(f)Bap(¢) forall feL*(Q), and (e Q. (12)
AcAL(T)

For the analysis of the projector properties, we make use of the Bézier mesh, that we define as
in [6, Section 7.3]. The Bézier mesh is different from the T-mesh, and plays a similar role to the
mesh in finite elements. We start recalling that T-junctions are internal vertices of the T-mesh with
valence equal to three, that can be grouped in horizontal (F, ) and vertical (T, L) T-junctions.
For a T-junction of type 4 with index coordinates (z,7), we define the extension as the minimal
horizontal line that, passing through the T-junction, intersects |p1/2] (closed) vertical edges to its
left, and [p1/2] to its right. The extensions in the other cases are defined in a similar way, using py
for vertical T-junctions. Then, we define extp(7) the extended T-mesh in the index domain adding
to 7 all the T-junction extensions. The Bézier mesh M7 (or simply M) associated to 7 is then
defined as the collection of non-empty elements in the domain 2 of the form

Q = (§1,i1,&12) X (§2,51,82,52) # 0, with (i1,42) X (j1,J2) € extp(T).

For a Bézier element Q € M7, and in general for any subdomain Q C €, we define the support



extension as the union of the supports of the functions whose support intersects (), that is

Q:= |J supp(Bap), with Ag = {A € A(T) : int(supp(Ba p)) N Q # 0}. (13)
AcAg

where int(C) denotes the interior of a set C'. Moreover, we define @ as the smallest rectangle in
containing ). The following result holds (see [6, Proposition 7.7]):

Proposition 4.1 Let T be a dual compatible T-mesh. Then there exists a constant C, depending
only on p, such that for any Bézier element Q € M7 the projector (12) satisfies

I (Hllz2) < Cllfll @), for all f € LX(Q).

Finally, we notice that for each anchor the index vectors (11) define a local Cartesian grid of
(p1+1)(p2+ 1) cells, called tiled floor in [4, 5]. Moreover, we also define the parametric tiled floor,
as the set of non-empty cells

[617ik7£1,ik+1] X [52,jk/7€2,jk/+1] ?é ®7 with ikaik-‘rl S hUP(A)7 jk’?jk)’-‘rl S UUP(A)'

We remark that in general, the cells of the tiled floor do not coincide with the elements of the
T-mesh, and the cells of the parametric tiled floor do not coincide with the elements of the Bézier
mesh.

4.3 Analysis suitable T-splines by bisection

In order to apply BPX preconditioners to analysis-suitable T-splines, it is necessary to define a
suitable refinement procedure that provides a multilevel structure. In this section we adopt the
refinement strategy introduced and analysed in [32], and present a new local quasi-uniformity
result necessary for the analysis of multilevel preconditioners. The idea in that work is to refine
by bisection alternating the refinement direction, and whenever a new edge is added, a recursive
algorithm is called to refine the elements in the neighborhood, ensuring that the condition of
analysis-suitability is preserved. One of the advantages of this refinement algorithm is that it
allows to associate a level (or generation) to each element and function, as required by multilevel
methods.

We start setting the generation g(7) = 0 for all the elements of the Cartesian grid 7 € 7y. Then,
the T-mesh 7 is defined as in (9)—-(10), choosing the bisection

. _ | bisecty(r) if g(7) is even,
bisect(r) = { bisect, (1) if g(7) is odd,

and setting the generation g(7') = g(7) 4+ 1 for 7 € bisect(7) (see [32, Definition 2.6]). Moreover,
we say that the bisection b, has generation g(b;) = g(7) + 1. Without loss of generality (see also
the proof of Theorem 3.6 in [32]), in the following we will assume that the bisections in (9) are
ordered by their generation, that is, if & > k' then g(b;,) > g(br,,), and the same relation holds
for the elements generated by the two bisections. In the following, we will denote by L the finest
generation (or level), that is, the generation of the last bisection.

Remark 4.2 We recall that elements with zero length in one parametric direction are not bisected
in that direction, see Section 4.1. However, when applying the bisection operator their generation
1s increased by one, in such a way that the next time the bisection operator is applied, they will be
refined in the other direction.
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To define the generation of the functions, we denote by ®y = {Bap : A € Ap(To)} the
functions of the tensor product spline space in the coarsest mesh, and then define for k=1,..., N

the collection of T-spline functions newly appeared or modified after the bisection b, , as

Bi = {Bap: A € Ap(T)N\[Bap: A € Ap(Tio)}.

Functions in & have generation 0, whereas functions in ®; have the same generation of the bisection
b, ,. To alleviate notation, in the following we will denote by ¢ the generation (or level) of
functions in ¥y, that is

Ek = g(ka_l):g(Tk,1)+1, fOI‘]{?:O,...,N,

with the convention that g(7_;) = —1. Notice that the subscript k varies from 0 to NN, while ¢
takes values from 0 to L.
To each &, we associate a subspace

Vi :=span @, 0<Ek<N. (14)

We also define the support of functions in ®;,1 < k < N and its support extension as

Wy 1= U supp (Bap), (15)
BA,pe@'k

and
Wy = U supp(Ba,p), with A, = {A € A(Tj) : int(supp(Ba.p)) Nwy # 0}, (16)
A,

respectively.
Notice that, since we alternate the directions of refinement, and recalling the notation of Sec-
tion 4.1, the local knot vectors of a function of generation ¢ are contained in

=l _ =[€/2] :LZ/QJ}
2 =11 , Eo .

For convenience, we also introduce the corresponding set of rational indices, I¢ = {Ilw 21,I2W 2J},
and the Bézier mesh in the parametric domain M? . For each generation ¢ we have that the mesh

size is hy ~ 272, This important relation between generation and mesh size can be also represented
using additional notation as

he =+t with y =272 € (0,1).

Apart from the generations, that are necessary to provide the multilevel structure, we also need
some definitions to adapt the refinement algorithm from [32] to the case of having an open knot
vector. Given two points x,x’ € R? we define the distance between them componentwise as the
vector

Dist(x,x’) = (abs (z1 — }), abs (x2 — 5)) € R?.

Moreover, let us define, for a point in the index domain x = (x1,x2) € [0, m1] % [0, m2], its translated
version X = (71, T2) given by
pa it xq < py,
Tg= ng if xg > ng,
rg elsewhere.
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Given a bisection T-mesh 7 and an element 7 € T, we denote its middle point as x,; = (1 -, Z27).
We can define the distance of a point x to the element 7, and the distance between two elements
7 and 7’ as

Dist(x, 7) := Dist(x, X ), Dist(r,7") := Dist(X,,X),

respectively. Then, we define the p-neighborhood of 7 as (see [32, Definition 2.4])
Gp(r) :=={7" € T : Dist(r,7") < Dp(g(7))},

where
Dy () = { 2742 (|p1/2] +1/2, [p2/2] +1/2) if £ is even,
P 2= WHN/2 ([py /2] +1/2, 2|p2/2] + 1) if £ s odd.

We also need to define the set (see [32, Corollary 2.15])
Up(T) = {x € [0,m1] x [0, mg] : Dist(r,x) < Dp(g(7))}

Given a bisection T-mesh 7 and an element 7 € T, we say that the bisection of 7 is p-admissible
or simply admissible, if all 7/ € G, (7) satisfy g(7') > g(7). Moreover, we say that a bisection T-
mesh 7 is p-admissible, if it can be obtained as in (9) with a sequence of admissible bisections.
It has been proved in [32, Theorem 3.6] that admissible T-meshes are also analysis suitable, and
therefore the dual basis and the projector of the previous section can be built.

Remark 4.3 The result in [32] does not take into account the repeated knots of the open knot vector.
However, the same ideas apply using the definitions above, because the bisection of zero measure
elements only adds new lines in the “safe” direction, without causing intersection of T-junction
extensions. The use of the translated points in practice forces that a line arriving at a repeated
knot, which is on the boundary of the parametric domain, should continue until the boundary of the
index domain.

Besides the analysis suitability condition, we need a local quasi-uniformity result, for which it is
necessary to use the following auxiliary lemmas.

Lemma 4.2 Let A € Ap(T) be an anchor of a p-admissible T-mesh T. Then, any cell in the
parametric tiled floor of A contains at most two Bézier elements of M7 .

Proof. Given a cell of the tiled floor, from [5, Lemma 3.2] it does not contain any vertex of 7 in its
interior, and any line of the extended mesh in its interior belongs to a T-junction extension. Since
the mesh is analysis suitable, only vertical or horizontal lines can be found in its interior, but not
both. Since a cell in the parametric tiled floor corresponds to a cell in the tiled floor, the result
holds because we are refining by bisection alternating the refinement directions. ([l

Lemma 4.3 Given a p-admissible T-mesh T and an element T € T, for any 7" € Gp(T) it holds
g9(m") z g(r) — 1.

Proof. See [32, Lemma 2.14]

Lemma 4.4 Let A € Ay(T) be an anchor of a p-admissible T-mesh T, associated to a function
of generation £. Then the length of the cells of the parametric tiled floor of A in each parametric
direction is equal to

Ly = 2%}2 if L is even, Ly = 27/22 or 2f722*1 if € is even,
- h h . . — h . .
2(e+i)/2 or 2(/3—%)/2 if £ is odd, W if £ is odd.
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Proof. The lemma is proved by induction, similarly to [32, Theorem 3.6]. The result clearly holds
for the functions in the tensor-product space associated to the T-mesh 7y. Assuming it is true for
Tk, we have to prove it for 7,11 = T}, + b7, . Since the bisections can be