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Abstract 

 
In this work we propose an Uncertainty Quantification methodology for sedimentary basins evolution under 

mechanical and geochemical compaction processes, which we model as a coupled, time-dependent, non-

linear, monodimensional (depth-only) system of PDEs with uncertain parameters. While in previous works 

(Formaggia et al. 2013, Porta et al., 2014) we assumed a simplified depositional history with only one 

material, in this work we consider multi-layered basins, in which each layer is characterized by a different 

material, and hence by different properties. This setting requires several improvements with respect to our 

earlier works, both concerning the deterministic solver and the stochastic discretization. On the deterministic 

side, we replace the previous fixed-point iterative solver with a more efficient Newton solver at each step of 

the time-discretization. On the stochastic side, the multi-layered structure gives rise to discontinuities in the 

dependence of the state variables on the uncertain parameters, that need an appropriate treatment for 

surrogate modeling techniques, such as sparse grids, to be effective. We propose an innovative methodology 

to this end which relies on a change of coordinate system to align the discontinuities of the target function 

within the random parameter space. The reference coordinate system is built upon exploiting physical 

features of the problem at hand. We employ the locations of material interfaces, which display a smooth 

dependence on the random parameters and are therefore amenable to sparse grid polynomial 

approximations. We showcase the capabilities of our numerical methodologies through two synthetic test 

cases. In particular, we show that our methodology reproduces with high accuracy multi-modal probability 

density functions displayed by target state variables (e.g., porosity). 
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Abstract

In this work we propose an Uncertainty Quantification methodology for sedimentary basins evolution under
mechanical and geochemical compaction processes, which we model as a coupled, time-dependent, non-
linear, monodimensional (depth-only) system of PDEs with uncertain parameters. While in previous works
(Formaggia et al. 2013, Porta et al., 2014) we assumed a simplified depositional history with only one
material, in this work we consider multi-layered basins, in which each layer is characterized by a different
material, and hence by different properties. This setting requires several improvements with respect to our
earlier works, both concerning the deterministic solver and the stochastic discretization. On the deterministic
side, we replace the previous fixed-point iterative solver with a more efficient Newton solver at each step of
the time-discretization. On the stochastic side, the multi-layered structure gives rise to discontinuities in
the dependence of the state variables on the uncertain parameters, that need an appropriate treatment for
surrogate modeling techniques, such as sparse grids, to be effective. We propose an innovative methodology
to this end which relies on a change of coordinate system to align the discontinuities of the target function
within the random parameter space. The reference coordinate system is built upon exploiting physical
features of the problem at hand. We employ the locations of material interfaces, which display a smooth
dependence on the random parameters and are therefore amenable to sparse grid polynomial approximations.
We showcase the capabilities of our numerical methodologies through two synthetic test cases. In particular,
we show that our methodology reproduces with high accuracy multi-modal probability density functions
displayed by target state variables (e.g., porosity).

Keywords: Sedimentary basin modeling, Uncertainty Quantification, Random PDEs, Sparse grids,
Stochastic Collocation Method
2010 MSC: 41A10, 65C20, 65N30

1. Introduction

Sedimentary basins occupy depressions of the Earth’s crust where different materials may deposit along
geologic times. Numerical simulation of compaction processes in sedimentary basins is relevant to a number
of fields, e.g. for the characterization of petroleum systems in terms of hydrocarbon generation and migration
[1, 2], understanding of large scale hydrologic behavior (e.g., compaction-driven flow or development of fluid
overpressure) [3, 4, 5, 6, 7, 8, 9, 10, 11], or modeling the formation of ore deposits [12].

Modeling basin scale compaction requires to consider mechanical compaction due to the sediments over-
burden. Moreover, geochemical processes may also occur, due to chemical precipitation and/or dissolution
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of minerals, and these may heavily affect the effective properties of the system (e.g., porosity, permeability).
The mechanics and fluid dynamics of the system evolve as a result of these coupled processes [13, 14]. Key
target outputs of basin compaction models are the porosity, pressure and temperature spatial distributions
along the basin history.

The geomechanical evolution of subsurface systems and the characterization of fluid dynamics in geolog-
ical media are classical applications for Uncertainty Quantification methodologies. This can be explained
upon considering that our knowledge of the architecture and of the multi-scale spatial heterogeneity of the
subsurface is typically incomplete. In the case of basin compaction we also deal with large characteristic
evolutionary scales (millions of years, Ma) and considerable spatial dimensions (km). In this context direct
measurements for the characterization of the key processes at the pertinent scale are typically scarce if not
lacking altogether, and therefore the boundary conditions and the model parameters are generally poorly
constrained. A common approach to deal with this lack of knowledge is to model the uncertain parameters
as random variables, and to consider the model predictions as the outputs of a random input-output map,
to be analyzed with statistical techniques.

In previous contributions we have developed a forward and inverse modeling technique for basin scale
compaction under uncertainty [15, 16], in a simplified framework in which we assume that compaction mainly
takes place along the vertical direction. This allows for a relevant simplification of the model structure
which is reduced to a one-dimensional (vertical) setting. In this context, our uncertainty quantification
technique relies on a sparse grids polynomial surrogate model of the input-output map [17, 18, 19, 20, 21],
which approximates the full compaction model outputs (e.g., porosity, temperature or pressure vertical
profiles). The sparse grid construction requires first to solve the full compaction model for a number of
parameter combinations, which is performed in [15, 16] through a fixed iteration algorithm. The sparse grid
approximation can then be algebraically post-processed to obtain relevant information for the Uncertainty
Quantification analysis, such as statistical moments and Sobol indices of the quantities of interest. Results
by [15, 16] demonstrate that this approach is very effective for the quantification of uncertainty when the
basin has sediments with homogeneous properties, as in such a case the key outputs are typically smooth
functions of the model parameters.

In this contribution we extend the approach to the case of a multi-layered material. Crucially, in the
multi-layer case some state variables experience discontinuities across the different layers, since they typically
assume different values depending on the properties associated with the geo-material. For example, the
evolution of porosity can considerably change between sandstone and shale units, due to (i) the different
mechanical properties associated to the sediments and (ii) geochemical processes leading to porosity changes
which selectively take place as a function of the local sediment composition (our model e.g. considers
porosity reduction due to quartz cementation which may largely affect porosity only in sandstone layers).
The occurrence of such sharp variations across interfaces poses two key issues to the numerical approach
proposed in [15, 16].

First, when stratified materials are of concern, permeability contrast of several order of magnitude are
commonly found, e.g., across interfaces between permeable sandy layers and shale units characterized by
very low permeability. For such low values, the fixed iteration method proposed in [15] is prone to failure. In
this work we solve this issue by implementing a Newton iteration algorithm, which considers the fully coupled
system of mass, momentum and energy conservation along the basin depth, together with the constitutive
relations which are associated with geochemical reactions .

A second key challenge of multi-layered cases is that when multiple model parameters are considered to
be random, a single space-time location may be associated with the presence of different geo-materials when
different realizations of the random parameters are considered. This results in a discontinuous input-output
map and a sparse grid (global) polynomial approximation of it will typically feature a loss of accuracy and
fairly low convergence rate.

The occurrence of discontinuities or sharp gradients in input-output maps is rather frequent in math-
ematical models describing physical problems which are of interest in the context of engineering and ap-
plied mechanics, such as conservation laws or advection-dominated transport processes. Special numerical
methodologies and procedures have been recently proposed to address this issue in various contexts. Discon-
tinuities in the parameters space have been typically tackled in literature with multi-element approximations
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[22, 23, 24, 25], discontinuities-tracking algorithm [26, 27, 28, 29, 30, 31, 32], or by suitably choosing or enrich-
ing the polynomial approximation basis [33, 34]. Another possibility is to transform of the target variables
into proxies which are more amenable to polynomial approximation, see e.g. [35].

We propose here an alternative approach based on the observation that, although the state variables at
a fixed depth depend in a discontinuous fashion on the uncertain parameters, the depth of the interfaces
among layers actually features a smooth dependence on the parameters and can therefore be accurately
approximated by a sparse-grids approach. Upon estimating the interface depth location, we can then map
each realization onto a reference domain in which the discontinuities in depth are aligned, and perform a
second sparse-grids interpolation in this reference coordinate system, in which the layers never mix and
hence sparse grids approximation of the state variables is effective.

While our approach is clearly different from multi-element approximations in the parameter domain, we
remark that it is not a discontinuity-tracking algorithm in the parameter space, either in other words, we
stress the fact that we do not try to approximate the boundary of the regions of the parameter space that
generate porosity profiles (or any other state variables of interest) such that a specific geomaterial will be
found at a specific depth. This approach would actually be rather unconvenient and quite challenging in
high dimensional parameter spaces, given that such region will in general depend on the depth of interest,
therefore we would need to track not one but multiple discontinuities in the parameter space. Instead, for
each value of the parameter, we predict the location of the physical discontinuities, that can be accurately
predicted by a sparse grid by exploiting the physical properties of our specific problem of interest.

The rest of this work is organized as follows. First, the mathematical model and its deterministic
numerical discretization are presented in Section 2. We then describe the methodology employed to deal
with discontinuities in the parameters space in Section 3. In particular, we first recall some basics of sparse
grid surrogate model construction in Section 3.1, and then motivate why discontinuities occur and propose
a suitable numerical treatment in Section 3.3. In Section 4 we showcase the capabilites of our proposed
approaches through synthetic test cases, characterized by a realistic evolution. Finally, some conclusions are
presented in Section 5.

2. Basin Compaction Model

In this section we provide a description of the mathematical formulation that we employ to model
compaction phenomena at sedimentary basin scale and the corresponding numerical discretization strategy
adopted. We consider two main drivers for compaction:

• Mechanical compaction, acting in the full rock domain and essentially due to the load of overburden
sediments, is described as a rearrangement of the deposited grains and the ensuing reduction of porosity.
Its effect is considered proportional to the effective stress which is defined as the difference between
total stress (lithological pressure) and pore water pressure.

• Geochemical compaction, acting in the sand-rich materials and related to quartz dissolution and
precipitation, provokes reduction of porosity once the mechanism starts: the interstices are increasingly
filled with quartz crystals. The minimum values that porosity could reach in this way are significantly
lower than those related to pure mechanical compaction.

Following previous approaches [13, 15, 11], we rely on the assumptions that (a) the most relevant phe-
nomena take place mainly along the vertical direction and (b) the rock domain is assumed to be fully
saturated by a single fluid characterized by uniform properties. Note that the first assumption enables us
to consider a one-dimensional system described by the domain Ω(t) = [zbot(t), ztop(t)], where zbot and ztop
denote the bottom and the top of the rock domain respectively, which can both vary with time. These as-
sumptions introduce considerable simplifications with respect to the reality of sedimentary systems, e.g. by
overlooking the occurrence of density driven or multi-phase flows. At the same time our simplified approach
is still capable of interpreting porosity and pressure distributions observed in real sedimentary systems [11].
In this context a key advantage of introducing a simplified model is that uncertainty propagation can be
thoroughly characterized at limited computational cost, a task which would be unaffordable if we were to
explicitly model the evolution of a three-dimensional system along geological scales.
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2.1. Mathematical model

We describe the time evolution of sedimentary materials along depth through a coupled system of partial
differential equations. We impose mass conservation for the solid and fluid phase along the vertical direction
by a standard formulation of the conservation laws

∂[(1− φ)ρs]

∂t
+
∂[(1− φ)ρsus]

∂z
= qs (1)

∂(φρl)

∂t
+
∂(φρlul)

∂z
= ql (2)

where φ [-] is the porosity of sediments; ui [m s−1], ρi [kg m−3] and qi [kg m−3 s−1] are the velocity, the
density and the source term of phase i (where i = s or l, for the solid phase or the fluid phase) respectively.
The last term conveys the effect of solid and fluid generation, generally related to geochemical processes.

Displacement of pore water is defined as the difference between the velocity of fluid and solid phase and
is described through the equation

uD = φ(ul − us) =
K

µl

(
∂P

∂z
− ρlg

)
(3)

where uD [m s−1] is the Darcy flux, K [m2] is the permeability, µl [kg m−1 s−1] is the fluid dynamic viscosity,
P [kg m−1 s−2] is the pore pressure, g [m s−2] is the gravitational acceleration.

Following [14] , we set
logK(φ) = k1φ− k2 − 15 (4)

where the permeability K is given in [m2] and k1 and k2 are empirical fitting parameters. These two
parameters are usually estimated considering experiments at laboratory scale ([14]) or analysis on core data
([36, 8]). Even if this empirical formulation was developed for sandstone and sand-rich material, it is also
widely employed for clays and shales [14, 36, 8], upon proper tuning of the values of k1 and k2. This modeling
choice is consistent with published dataset (see, e.g., [8]).

The effect of mechanical compaction is described following the approach of [37]

dφM
dt

= −β(φ0 − φf ) exp(−βσc)
dσc
dt

(5)

where
d·
dt

=
∂·
∂t

+ us
∂·
∂z

is the material derivative. dφM

dt is the material porosity variation due to mechanical compaction, β [kg−1

m s2] is the porous medium (uniaxial) vertical compressibility, φ0 is the sediment porosity value at time of
deposition, φf is the minimum porosity value achieved by pure mechanical compaction, and σc [kg m−1 s−2]
is the vertical effective stress, defined as the difference between lithostatic pressure and pore water pressure.

Quartz precipitation is considered modeled following [38]

dφQ
dt

= A
MQ

ρQ
aq10bqT (6)

A = A0
φ

φact

where φQ [-] is the quartz volumetric fraction; MQ [kg mol−1] is the quartz molar mass; ρQ [kg m−3] is the
density of quartz; A0 [m−1] and φact [-] are respectively the specific surface and porosity at the onset of
quartz cementation; aq [mol m−2 s−1] and bq [K−1] are system parameters. The activation of this reaction
is temperature dependent: quartz starts to precipitate when temperature T reaches a critical value TC that
is generally assumed to be variable between 353 and 373 K ([39]).
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As a consequence of equations (5)-(6), the porosity variation is then described by dφ = dφM − dφQ,
where dφM and dφQ denote the porosity variation due to mechanical compaction and quartz precipitation,
respectively.

Temperature evolution inside the rock domain is modeled by

CT
dT

dt
+ ρlcluD

∂T

∂z
− ∂

∂z

(
KT

∂T

∂z

)
= 0 (7)

CT = φρlcl + (1− φ)ρscs

KT = λl
φλs

1−φ

where CT (φ) [kg m−1 K−1 s−2] is the effective thermal capacity of the medium, cl and cs [m2 K−1

s−2] are the liquid and solid specific thermal capacities, respectively; KT (φ) [kg m K−1 s−3] is the thermal
conductivity; and λl and λs are fluid and solid specific conductivities ([14]). Equation (7) includes dynamics
of heat exchanges due to fluid advection, solid displacement and thermal diffusion.

An appropriate selection of initial and boundary conditions is needed for the solution of the nonlinear
system of partial differential equations (2)-(7). The basement that lies below the sedimentary basin is
typically composed of rocks of igneous and metamorphic origin. We assume here that the basement can
be considered as an impermeable layer, upon imposing zero fluid flux at z = zbot. We assume that the
considered sedimentary system is submerged below the sea level, to which we assign constant depth hsea,
i.e. we set ztop = −hsea. To take into account the presence of the sea water layer a fixed load proportional
to the overlying water depth is assumed on the top of the basin, i.e. p(z = ztop) = γseahsea. At the top
location ztop temperature is also assigned equal to T (z = ztop) = Ttop as a Dirichlet boundary condition.
A heat flux is assigned as a Neumann boundary condition at the bottom of the basin, by fixing the local
vertical derivative ∂T

∂z

∣∣
z=zbot

= GT .

2.2. Numerical discretization

The numerical discretization follows to a large extent the strategy described in [15] concerning the space
and time discretization of the equations, but differs significantly in the non-linear solver.

As in [15] a Lagrangian approach is adopted to address the temporal evolution of the computational
domain, i.e. the computational grid is deformed under the effect of compaction according to the solid
matrix movement. We have, at each time step tk, Nk cells and Nk + 1 nodes whose position is denoted as

zt
k

i for i = 1, . . . Nk + 1. Due to compaction the size of the elements of the grid, hi = zt
k

i+1− zt
k

i , can change
in time. To include the deposition of new sediment layers over time we take into account sedimentation by
a modified load at the top of the basin until the thickness of fresh sediments equals the characteristic size
of the mesh elements. At that point, a new element is added to the computational grid, see figure 1.

Thanks to the Lagrangian approach it is straightforward to account for the presence of different layers,
characterized by different mechanical and chemical properties as required by the applications considered in
this study. The evolution equations of the model are discretized in time with the Implicit Euler method.
The size of the time step is chosen according to the averege sedimentation rate Used of the case of interest
in such a way that a new cell grid of size h is added at the top of the domain after α time step:

δt =
h

αUsed
.

Concerning space discretization, mixed finite elements are used for the pressure and temperature prob-
lems, in particular pressure and temperature are approximated with piecewise constant P0 elements, while
for Darcy velocity and heat flux we employ, since we are considering a 1D domain, simply nodal P1 elements.

For the numerical solution of the system of coupled equations previous works, such as [15], used a strategy
inspired by the work of [40] related to three-dimensional basin modeling and based on an idea first presented
in [41].

However that formulation of the iterative splitting has proven to be unstable for low permeable materials,
due to the strong coupling between pressure and porosity. For this reason, since we are interested in
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Figure 1: Deformation of the grid and addition of new elements with sedimentation

simulations that involve multiple material layers with uncertain parameters we resort to a more robust
strategy. In particular, the nonlinear coupling is solved by Newton iterations. We consider the full system
of equations which, after discretization in space and time, can be written as

F(Z,us,φQ,φM ,φ,S,P,u
D) = 0

where Z,us,φQ,φM ,φ,S,P,u
D are vectors containing the nodal or cell values of the discrete unknowns:

the position of the grid nodes zi, the volumetric fraction of precipitated quartz, the mechanical and effective
porosity, the sedimentary load, the fluid pressure and the Darcy velocity.

If we set X =
[
Z,us,φQ,φM ,φ,S,P,u

D
]

the j − th iteration of Newton’s method reads

JF(X(j))δX(j) = −F(X(j))

X(j+1) = X(j) + δX(j)

being JF(X) the Jacobian matrix of F(X). For each time step the initial guess is given by the solution at
the previous time step. The stopping criterion is a simple test on the grid nodes:

max
i=1,...,N

|Z(j+1)
i − Z(j)

i |
h

(j)
i

≤ toll.

A more rigorous test should in principle account for the norm of the vector of the normalized increments.
However, due to the different scaling of the variables it is difficult in practice to select an effective tolerance
for the whole vector, while a simpler test on the deformation of the domain is robust and representative of
the compaction phenomenon.

Note that the position of the N + 1th node is given as a boundary condition by the paleobathimetry
reconstruction.

Remark. In the present implementation the temperature equation is solved at each Newton iteration sepa-
rately from the others, after the computation of X(j+1). This choice is motivated by the fact that temperature
is only weakly influenced by the solution of the other equations in the model. However, the nonlinear solver
could be easily modified to include the temperature equation.
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3. Uncertainty Quantification of the discontinuous outputs of the compaction model

As we have already mentioned, our goal is to extend the previous works [15, 16, 11], to be able to
characterize the uncertainty on the quantities of interest computed by the model for multi-layered basins
described in the previous section, either state variables or quantities obtained post-processing the state
variables.

Specifically, we suppose that the compaction model has Np uncertain parameters (we will discuss them
in details later on), which we denote by p1, p2 . . . , pNp

; we collect all of them in an Np-dimensional random
vector, p = [p1, p2 . . . , pNp

]. We assume that each uncertain parameter pn can range in the interval Γn =
[an, bn], with an, bn ∈ R, and that each value is equally likely, i.e, we model each pn as a uniform random
variable, with probability density function ρn(pn) = 1

bn−an . The random vector p will therefore take values

in the Np-dimensional hyper-rectangle Γ = Γ1 × Γ2 × . . .× ΓNp
, p ∈ Γ ⊂ RNp ; furthermore, it is reasonable

to assume that such random variables are independent, therefore the joint probability density function of p

will be ρ(p) =
∏Np

n=1
1

bn−an . Denoting by f = f(p) : RNp → R any output of the compaction model, we are
interested in computing quantities such as the expected value and the variance of f ,

E[f ] =

∫
Γ

f(p)ρ(p)dp, Var[f ] = E[f2]− E[f ]2 (8)

or its probability density function ρf (p).
These operations involve multiple evaluations of f for different values of the unknown parameters, and

therefore can be very expensive. Thus, a widely used approach to reduce the computational cost of this
kind of analysis consists in first building a surrogate model for f and then obtaining the quantities detailed
above by post-processing; of course, this strategy is effective only if the number of full model evaluations
needed to build the surrogate model is “small”. To this end, observe that f is a Np-dimensional function,
with Np � 1 typically. Thus, “naive” approaches that require evaluating f over a cartesian grid of points
of Γ would be unpractical, because the number of full model evaluations required by such strategies would
grow exponentially with Np (“curse of dimensionality”). Sophisticated model reduction techniques must
therefore be used to circumvent this challenge. Here, we follow the previous works [15, 16] and consider a
global polynomial surrogate model over the set of parameters, built by a sparse grid interpolation formula [17,
18, 19, 20, 21]. However, building an effective sparse grid approximation of state variables such as porosity
in the multi-layered case is not straightforward, due to the fact that f might actually be discontinuous
with respect to p, and a dedicated procedure needs to be introduced. In the rest of this section, we briefly
recall the stardard sparse grids construction, and then we detail the procedure that we propose to deal with
discontinuous response functions. In what follows, let N+ and R+ denote the set of strictly greater than 0
integer and real numbers. Moreover, we will denote by ek the k-th canonical vector of RNp , i.e. a vector
with ek = 1 and ej = 0 for j 6= k for k = 1, . . . ,Np, and by bold numbers, such as 0 and 1, the vectors of
repeated entries 0 = [0, 0, . . . , 0] ∈ NNp ,1 = [1, 1, . . . , 1] ∈ NNp .

3.1. Sparse grid approximation

The basic block to construct a sparse grid approximation is a sequence of univariate interpolant poly-
nomials over each Γn (in our case, Lagrange polynomials, as detailed below), indexed by j ∈ N, which
thus denotes the univariate interpolation level. For any direction n = 1, . . . ,Np of the parameter space,
consider a set of m(j) points, Pm(j) = {pj,1, pj,2, . . . , pj,m(j)} ⊂ Γn, where m(·) : N→ N is a function called
“level-to-nodes” function that specifies the number of points to be used at each interpolation level, such
that m(0) = 0,m(1) = 1 and m(j) ≥ (j − 1); the sequence of sets Pm(1),Pm(2), . . . is said to be “nested” if
the set of points at level j is a subset of the set of points at level j + 1, Pm(j) ⊂ Pm(j+1), and non-nested
otherwise. The points should be chosen according to the probability density functions ρn, see e.g. [17];
Gauss–Legendre (non-nested) and Chebyshev/Clenshaw–Curtis (nested) points are suitable choices for uni-
form random variables, while equispaced points should not be chosen since they are well-known to suffer of
accuracy issues (e.g. the Runge phenomenon), cf. e.g. [42, 43]. Observe that the family of points could in
principle be different on each direction n, i.e., one might want to use Gauss–Legendre points for a specific
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random parameter and Clenshaw–Curtis points for another one, but in this work we will make the same
choice for all the parameters and therefore we write pj,k instead of pj,k,n and Pm(j) instead of Pnm(j).

For a fixed level j and set of points Pm(j), we denote by Um(j)
n [g] the standard Lagrangian interpolant

operator of a continuous function g ∈ C(Γn), and furthermore we define the detail operator ∆
m(j)
n as

∆m(j)
n [g](p) = Um(j)

n [g](p)− Um(j−1)
n [g](p). (9)

Observe that building the interpolant (and hence the detail operator) requires evaluating the function g at
the points of Pm(j). We also set U0

n[g](p) = 0.

Next, we introduce the multivariate counterparts of Pm(j),U
m(j)
n and ∆

m(j)
n . For any j ∈ NNp , we write

m(j) to signify (with a slight abuse of notation) the vector [m(j1)m(j2) . . .m(jNp
)]. We begin by letting

Gm(j) denote the cartesian grid with m(j1)×m(j2)× . . .×m(jNp
) points, Gm(j) = P1

m(j1) × P
2
m(j2) × . . .×

PNp

m(jNp ). Upon evaluating any given multivariate continuous function g : Γ→ R over the points of such grid,

we obtain the multivariate tensor Lagrange interpolant of g,

T m(j)[g](p) = (Um(j1)
1 ⊗ . . .⊗ Um(jNp )

Np
)[g](p). (10)

Note that T m(j)[g] = 0 whenever a component of m(j) is zero. Finally, we introduce the so-called hierarchical
surplus operators by taking tensor product of details operators,

∆m(j)[g](p) = (∆
m(j1)
1 ⊗ . . .⊗∆

m(jNp )

Np
)[g](p). (11)

The sparse grid approximation of f is then defined as a sum of hierarchical surpluses. Namely, we consider

a downward closed set1 I ⊂ NNp

+ and define

SI [f ](p) =
∑
j∈I

∆m(j)[f ](p) =
∑
j∈I

cjT m(j)[f ](p), cj =
∑

k∈{0,1}Np

(j+k)∈I

(−1)|k|, (12)

where the second equality is known as “combination technique form” of the sparse grid and can be obtained
by combining equations (9), (11) and (10) with the first expression in (12), see e.g. [44]. The “combination
technique form” can be useful in practical implementations. Observe also that many cj will be zero: more
precisely, if I is downward closed then cj is zero whenever j + 1 ∈ I.

The set I in (12) prescribes the hierarchical surpluses to be included in the sparse grid, and should be
chosen to give good approximation properties while keeping the number of points in the sparse grid to a
minimum (remember that one full PDE model solve per point is required to build the sparse grid). Observe

that choosing I =
{

j ∈ NNp

+ : maxn=1...,Np
in ≤ w

}
for w ∈ N would result in SI [f ](p) = T m(w)[f ](p),

i.e., a multivariate tensor approximation of f over a cartesian grid with m(w) points along each direction
Γn, that we have already ruled out as impractical due to the fact that it would require m(w)Np PDE solves.
Common choices for I are

I =

j ∈ NNp

+ :

Np∑
n=1

(in − 1) ≤ w

 for w ∈ N (13)

and the anistropic counterpart

Iα =

j ∈ NNp

+ :

Np∑
n=1

αn(in − 1) ≤ w

 for w ∈ N (14)

1A downward closed set (also referred to as “lower set”), is a set I ⊂ NNp
+ such that

∀i ∈ I, i− ek ∈ I for k ∈ {1, 2, . . . ,Np} such that ik > 1.
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where α = [α1, . . . , αNp ] ∈ RNp , αn > 0, are coefficients that are chosen so that a higher polynomial degree
is allowed along the directions deemed more important (the more important the random parameter, the
smaller the corresponding coefficient αn), see e.g. [20, 45, 15]. More advanced strategies for the selection
of the set I are available in literature: for instance, in [46, 47, 48] an algorithm for optimal sparse grids
construction for elliptic PDEs with random coefficients is discussed, while ad adaptive algorithm based on
“a-posteriori” refinement has been discussed in [49, 50, 51, 52, 53]. In this work we only discuss results
obtained with anisotropic sets of the form (14) (the specific choice of α will be detailed later, in Section
4.2). We have also performed some tests with adaptive construction of I and obtained analogous results
(not shown).

We conclude this introductory sections by briefly recalling how relevant Uncertainty Quantification in-
formation can be extracted from a sparse grid approximation by suitable post-processing. First, let HmI be
the set of collocation points used to build the sparse grid approximation SI [f ]; one can then associate a
sparse grid quadrature formula QmI(w)[·] to SI [f ], i.e.

∀ f ∈ C0(Γ),

∫
Γ

f(p)ρ(p)dp ≈
∫

Γ

SI(w)[f ](p)ρ(y)dy = QI(w)[f ] =
∑

pj∈Hm
I

f(pj)$j , (15)

for suitable weights $j ∈ R. As a consequence, upon building the sparse grid approximation of f , one can
immediately compute an approximation of its expected value and higher moments introduced in (8).

Second, by some algebraic manipulations of the combination technique form of the sparse grid approx-
imation SI [f ](p), cf. eq. (12), it is possible to compute the so-called Sobol indices of f , which quantify
which percentage of the total variability of f is due to the variability of each random parameter and to their
products, in the spirit of a variance decomposition analysis see e.g. [54, 55, 56, 57]. We refer the interested
reader to [15, 58] for more details on how to obtain the Sobol indices of f starting from its sparse grids
approximation SI [f ](p); see also [59].

3.2. Approximation of discontinuous outputs: a two-steps surrogate model

As already discussed in the introduction, in this work we focus on sedimentary basins composed by
layers of different geomaterials (or lithological units). While some of the variables are continuous across
material interfaces (e.g., temperature and pressure vertical distributions) other key quantities (e.g., porosity
and permeability) may significantly differ as a function of the geomaterial. At the same time, the depth
of the interface between lithological units is random, as it typically depends on the values of the random
parameters. As a consequence different kind of geomaterials may be found at a given depth z∗ at time t
for different realizations of the random parameters. This phenomenon is exemplified in Figure 2-left, which
shows two vertical distributions of porosity obtained from the direct solution of the mathematical model
described in Section 2.1 for two different realizations of the random parameters. The jumps in the porosity
profiles are symptoms of geomaterial changes, and it is clearly visible from the figure that interfaces occur at
different dephts depending on the random parameter. This implies that the porosity (and other quantities
of interest as well) at a fixed depth z∗ will be exhibit a discontinuous behavior with respect to the random
parameters p.

As a consequence, the quality of a standard sparse grids approximation for f(p) will be dramatically
affected, since sparse grids interpolants are effective only if f(p) is a smooth function of the parameters
p. The Uncertainty Quantification procedure for single-material basins developed in the previous work [15]
cannot be applied verbatim in this context, or, more precisely, it can be applied only at those depths for
which the same material occurs regardless of the value of the random parameters. Similarly, with a view to
inverse basin modeling, the procedure we proposed in [16] based on [15] could only be applied upon discarding
all data collected at depths for which different materials might occur. This hampers the possibility to apply
our methodology in significant real world scenarios, particularly when thin layers appear in the stratigraphic
sequence.

In this work we propose an original procedure to circumvent this issue. Our proposed methodology
stems from the observation that while quantities at a fixed depth will be likely discontinuous with respect
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Figure 2: Left: two porosity z-profiles (a blue one and a red one) corresponding to two different realizations
of the random parameters p. The porosity jumps between consecutive layers, and the position of the
interfaces depends on the realizations of p, leading to discontinuity in the function f(p) = φ(z,p) for
fixed z. Right: depth of the interfaces as a functions of p in a case where the layers are composed by
two alternating materials whose mechanical compaction parameters (parameters β in (5)) are considered
random, p = [β1 β2] ∈ Γ. The position of the interfaces varies smoothly over Γ.

to the parameters p, the position of the interface between two materials typically depends smoothly on p.
We give numerical evidence of this fact in Figure 2-right, where we display the variation of the position
of the material interface as a function of two random parameters, namely the sandstone and shale vertical
compressibilities (refer to Section 4.2 for more details). This suggests to create a surrogate model for the
state variables with a two-steps approach: first, a sparse-grid approximation for the position of each interface
is computed, and then the state variables are approximated within each homogeneous lithology.

3.3. A two-steps surrogate model

We detail the procedure referring to the cartoon in Figure 3, which is composed by three panels, (a),(b),
and (c), starting from the bottom-left corner and proceeding counter-clock-wise. We focus here on the
porosity as an example, but the procedure can be applied verbatim to any other discontinuous output of
interest. Figure 3-(a) shows in blue and red two porosity-depth profiles at T=today, corresponding to two
different realizations of the uncertain parameters, and in green a portion of the porosity profile predicted
with our two-steps procedure.

We begin by denoting by Ψk(p) the depth of the k-th interface as a function of the random parameters,
where k = 0 denotes the seafloor and k = K denotes the bottom of the basin. Note that our procedure
assumes that the number of layers does not depend on the random parameters. The seafloor is the upmost
interface, i.e., the top of the most recent layer, around (fixed to) −200m in Figure 3-(a), while the bottom
of the basin is the bottom of the oldest layer, whose depth depends on p and is around −2500m for the blue
profile and around −3000m for the the red profile. As already discussed, the interfaces among geomaterials
in the blue and red profiles occur at different depths.

The key idea to create the sparse grids approximations of the state variables is to operate on a layer-
by-layer basis, introducing a piecewise linear mapping x̂ = F (z,p), that projects the state variables profiles
from the physical domain into a reference domain where the discontinuities are aligned, or, in other words,
where the interfaces between geometerials are forced to occur at the same location for every realization of
the random parameters. Crucially, since the position of the interfaces is random, the map F is random as
well, i.e., it depends on p. Figure 3 shows two realizations of such map in panel (b) and the aligned porosity
profiles in Figure (c).

In details, the piecewise linear mapping is defined so that the interfaces are aligned at prescribed values
x̂k: the seafloor is located at 0 = x̂0 = F (Ψ0(p),p), the bottom of the basin is located at 1 = x̂K =
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Figure 3: Cartoon of the two-steps procedure to construct a sparse grid surrogate model of a discontinuous
quantity.

F (ΨK(p),p), and intermediate interfaces are located at k
K = x̂k = F (Ψk(p),p). Incidentally, note that the

reference domain needs not be [0, 1] and could be also e.g [0,K], with x̂k = k. Assuming for a moment that
Ψ0(p),Ψ1(p), . . . ,ΨK(p) are known for a given p, then the map F can be written as

x̂ = z
x̂k+1 − x̂k

Ψk+1(p)−Ψk(p)
+
x̂kΨk+1(p)− x̂k+1Ψk(p)

Ψk+1(p)−Ψk(p)
for Ψk(p) ≤ z ≤ Ψk+1(p).

In the reference domain, the interfaces are aligned, therefore for a fixed x̂ the state variables will always
be related to the same layer: therefore, it is reasonable to assume that in the reference domain the state
variables at fixed x̂ depend smoothly on the parameters, and can be effectively approximated by a sparse
grids approximation. In other words, we are implicitely assuming that the behavior of the state variables at
any fixed fraction of depth of each layer depends smoothly on the parameters.

Clearly, Ψ0(p),Ψ1(p), . . . ,ΨK(p) are not known a-priori; however, the functions Ψk(p) can be assumed
to be smooth with respect to p as we discussed earlier, therefore they can be effectively approximated by
sparse grids. Thus, the layer-by-layer state variables approximation algorithm can be summarized as follows:

1. Construct the sparse grid approximation of the position of the interfaces between layers, SmI [Ψk](p)
for every k = 0, 1, . . . ,K;

2. For every couple of values z∗,p∗ at which an approximation of φ(z∗,p∗) is sought (for instance, the
location marked by a green triangle in panel (a)):

(a) approximate by sparse grids the position of the interfaces for p∗, Ψk(p∗) ≈ SmI [Ψk](p∗): in panel
(a), the green circle marks the predicted depth at which the first interface will occur, given the
location of the first interface for the blue and red profile, marked with squares;
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(b) use these values to derive the expression of the piecewise linear mapping x̂ = F (z,p∗) and compute
x̂∗ = F (z∗,p∗): in panel (b), the green circle defines the first portion of the new realization of the
piecewise linear mapping, that can be used to compute the reference location x̂∗ corresponding
to the physical location z∗ of the green triangle in panel (a);

(c) compute the sparse grid approximation of the porosity at x̂∗, φ(x̂∗,p∗) ≈ SmI [φ(x̂∗, ·)](p∗). In
panel (c), a green triangle marks the predicted value of porosity at x̂∗ given the porosity values
at the same location for the blue and red profile, marked with squares. Observe that some kind
of finite element interpolation for the profiles computed with the full model (as the one detailed
in Section 2.2) is needed as a preliminary step to compute at x̂∗ the values of porosity that will
be used to build SmI [φ(x̂∗, ·)](p∗);

(d) approximate φ(z∗,p∗) ≈ SmI [φ(x̂∗, ·)](p∗).

Remark. The methodology we just described bears some similarities with the one discussed in the very recent
work [35]. There, the authors consider a time-dependent advection-diffusion problem, and show that while it
is hard to approximate with sparse grids the dependence on the random parameters of the concentration of a
solute at any space-time location due to the presence of sharp gradients, the arrival time of a given value of
concentration at the same location is instead more amenable to approximation with sparse grids. Therefore,
the authors suggest a three-step procedure: a) pre-process the output of the full-model, i.e., the concentration
profiles, to obtain the arrival times at the desired spatial locations; b) approximate the arrival times for
new values of the random parameters with a sparse grid; c) convert back to obtain the concentration profile
at the desired space-time locations. Our procedure is different in that we are able to treat discontinuous
outputs, and our first step does not require a pre-process of the porosity profile but is rather based on a set of
independent quantities (the location of the interfaces between layers) that are interpolated already over the
parameter space.

4. Numerical Results

In this section we illustrate the application of the approach discussed in section 3 to a couple of synthetic
test cases.

4.1. Assessment of the numerical solver for the full model

As we explained in section 2.2 we have chosen, for the solution of the coupled nonlinear system of
equations, a monolithic approach with Newton iterations. To prove that this approach is more robust than
the iterative splitting proposed in previous works we consider a simple test case and compare the solutions
obtained with the strategy proposed in [15] and the Newton method. We consider a single layer that is
subject to compaction due to its own weight and a constant overburden S0. This simple setup avoids
inconsistencies due to different initialization of the new cells added to the domain in the two approaches.

The main material and geometric properties are summarized in Table 1.

Initial thickness 500m Initial porosity φ0 0.55
Sea depth hsea 500m Compressibility β 4.0e-7
Rock density ρs 2648kg/m3 Time span 2.5y

Table 1: Main physical and geometrical parameters for test case 4.1.

At the initial time t = 0 the porosity is uniform and the effective stress is set to zero: then, compaction
occurs quickly until the equilibrium configuration is reached. In this test geochemical reactions are deacti-
vated. Even if a rigorous proof is out of the scope of this work, we want to show by numerical experiments
that the iterative splitting, implemented as in [15], requires more and more iterations as the rock perme-
ability decreases and eventually fails to converge. To this aim we consider the permeability law (4) and the
following values for k1 and k2:
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Figure 4: Porosity, pressure and number of iterations for the fixed point and the Newton method for α = 1.
In the first two plots the Newton solution at different times is represented by lines of colors ranging from
yellow to red, together with the fixed point solution at the final time.
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Figure 5: Porosity, pressure and number of iterations for the fixed point and the Newton method for α = 0.7.
In the first two plots the Newton solution at different times is represented by lines of colors ranging from
yellow to red, together with the fixed point solution at the final time.

k1 = 14.9α+ 1.94(1− α), k2 = 7.7α+ 8(1− α),

with α ∈ [0, 1] to mimic a variable blend of sandstone and shale. For α = 1 the sediments are quite
permeable and the layer compacts without remarkable overpressure, see figure 4.

As α decreases the behavior changes and we observe overpressure counteracting compaction (figure 5).
This more complex behavior reflects in a higher number of iterations in particular for the iterative splitting
(fixed point) method. Finally for α = 0.5 the fixed point method fails to converge while, with the same
tolerance and stopping criterion we obtain a solution in 8 iterations with the Newton method. This is due
to the complex pressure-porosity interaction, shown in figure 6: in this cases, due to the low permeability
the iterative splitting of [15] is unstable, while we can always converge to the solution with a fully coupled
approach.

4.2. Assessment of the Uncertainty Quantification methodology

We test the procedure described in section 3 considering a synthetic test case characterized by alternat-
ing depositional events of two geomaterials, i.e. sand and shale sediments. Altough most of the effective
parameters are affected by considerable uncertainty, given the large space-time scales involved in the com-
paction processes, here we aim at investigating the characterization associated with input which have a
large impact on the location of the interfaces between different materials. With this idea in mind, we select
three uncertain input parameters: βsd and βsh, appearing in Equation (5), i.e. the porous medium vertical
compressibility for sandstone and shale, respectively; and the coefficient ksh2 , which appears in Equation (4)
and defines the vertical permeability of shale. The ranges of variability assigned to these materials are listed
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plots the Newton solution at different times is represented by lines of colors ranging from yellow to red.

physical meaning symbol parameter space
param. for compaction in sandstone βsd 2× 10−8 − 12× 10−8

param. for compaction in shale βsh 2× 10−8 − 12× 10−8

param. of K-Φ law ksh2 4 - 10

Table 2: List of uncertain parameters and associated ranges of variability

in Table 2, while Table 3 reports the total sedimentation time, the sedimentation rate and the depositional
order of sediments, together with boundary conditions and all other model parameters which are set to fixed
values for this analysis.

We consider two cases characterized by two distinct parameter spaces: for case (A) only βsd and βsh are
free to vary in selected variability ranges while in case (B) all three parameters are considered uncertain.
We consider these two cases to quantify the effect of pure mechanical compaction on interfaces positions
against the combined effect of mechanical compaction and vertical fluid flow inside the rock domain. In what
follows, we build our sparse grids employing Gauss–Legendre nodes and a linear “level-to-nodes” function,
m(j) = j, with index sets (13) or (14).

4.2.1. Approximation of interface positions

Figure 7 displays the distribution of geomaterials (shale and sandstone) obtained upon solving the full
compaction model for the collocation points of a sparse grid sampling of the parameter space for the two
cases. Results refer to present time (i.e., the final configuration obtained for each simulation). Each column
in the two panels in the Figure represents an independent simulation of the process: the juxtaposition of the
results obtained for all collocation points allow to visually appreciate the variability of the interface position
as a function of the uncertain parameters (left figure: isotropic sparse grid Equation (13), w = 6, 137
collocation points; right figure: anisotropic sparse grid Equation (14), α4 = [4 4 1], w = 12, 133 collocation
points). The results show that interface Ψ1 is constant in all realizations for both cases A and B. This
is explained upon observing that the position of this interface is fixed and corresponds to the position of
the basin top. Interface Ψ2 also display modest changes as a function of the model parameters for the
two considered cases. The remaining interface locations Ψ3-Ψ6 display variations larger than 100m across
the full sample of parameter realizations. We observe however that for case A, for which ksh2 is fixed to a
constant value, the location of interfaces Ψ3-Ψ6 change by maximum 300m. On the other hand when ksh2
is considered as uncertain (case B) the location of the deepest interfaces Ψ5-Ψ6 may vary by up to 1000m
across the considered sample.

To identify the impact of each parameter on the variability of the interface position we resort to the total
Sobol sensitivity indices ST , which quantify the contribution of each uncertain parameter to the variance of
the interface position (see [15, 16] for an efficient procedure to compute such indices starting from a sparse
grids approximation). The results are depicted in Figure 8 for case (A) and (B) respectively. Note that
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SEDIMENTATION CHARACTERISTICS
parameter value units
total sedimentation time 100 Ma

constant sedimentation rate 40 m Ma−1

depositional order (and time)

1. sand (20)

2. shale (20)

3. sand (20)

4. shale (20)

5. sand (20)

(depositional time [Ma])

INITIAL AND BOUNDARY CONDITIONS
parameter value units
bathymetric high ( hsea ) 200 m
temperature at basin top ( Ttop ) 295.15 K
heat flux at basin basement ( GT ) 0.024 K m−1

Darcy flux at basin basement ( uD ) 0 m s−1

FLUID CHARACTERISTICS
parameter value units
fresh water density ( ρl ) 999 kg m−3

seawater density ( ρlsea ) 1025 kg m−3

viscosity ( µl ) 1.001× 10−3 kg m−1 s−1

specific thermal capacity ( cl ) 4186 J K−1 kg−1

specific heat conductivity ( λl ) 0.6 W K−1 m−1

POROUS MEDIUM CHARACTERISTICS
parameter value units

sandstone shale

density ( ρs ) 2648 2608 kg m−3

specific thermal capacity ( cs ) 741 795 J K−1 kg−1

specific heat conductivity ( λs ) 3.0 1.2 W K−1 m−1

sediment porosity at deposition ( φ0 ) 0.5 0.8 -

residual porosity ( φf ) 0.14 0.08 -

k1, porosity-permeability law 14.9 6.75 log(m2)

k2, porosity-permeability law 1.94 uncertain log(m2)
QUARTZ CHARACTERISTICS

parameter value units
density ( ρQ ) 2650 kg m−3

molar mass ( MQ ) 6.008× 10−2 kg mol−1

initial specific surface area ( A0 ) 104 m−1

parameter of reaction model ( aq ) 5× 10−19 mol m−2 s−1

parameter of reaction model ( bq ) 0.022 Celsius−1

activation temperature ( TC ) 373.15 K

Table 3: List of model parameters set to a fixed value. k2 for shales is one of the parameters considered as
uncertain, see Table 2.
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Figure 7: Compaction histories: list of full model realizations obtained for each set of input parameters.
Results are referred to the analyzed cases: on the left (case A) only βsd and βsh are considered as uncertain,
while on the right (case B) also ksh2 can vary in selected space interval.

Sobol indices are not computed for the first interface since its position is known and fixed by the boundary
condition.

Figure 8-left shows the results obtained for case (A). Its analysis highlights that the position of each
interface Ψi is sensitive to compaction taking place within materials found at shallower locations than the
interface itself. For example, we observe that the position of interface Ψ2 is influenced merely by βsd,
sandstone being the only material overlying this interface. The parameter βsh influences the position of Ψ3

to a larger extent than βsd, as this interface is directly underlying a shale lithological unit. For interfaces
number Ψ4, Ψ5, Ψ6 the influence of the two parameters tends to level off and the difference between STβsd

and STβsh
is reduced. These results suggest that for case (A) βsd and βsh have a similar impact on the

uncertainty of the position of the interfaces.
Figure 8-right shows the results obtained for case (B). The role of βsd and βsh on the interface position

display a similar behavior as in case (A). However, the influence of parameter ksh2 is predominant on the
position of all interfaces with the exception of Ψ2, which lies beneath the shallowest sandstone unit and
therefore does not depend on the parameters governing flow and compaction in the shale layers. For all
other interfaces Ψi with i = 3 . . . 6 we obtain ST

ksh2
> 0.75. This result indicates that the approximation of

the material interfaces may benefit from anisotropic sampling with an increased sampling frequency along
the parameter ksh2 , upon following the criterion in (14).

In the following we refer to case (B) only, which displays larger variations in the interface positions and
therefore is more challenging for our uncertainty quantification procedure.

We now aim at assessing the quality of the estimation of the interface positions Ψk through sparse grids.
To this end, we perform a convergence study of the sparse grids approximation of Ψk, measuring the error
with the two different error metrics detailed below. Moreover, we will repeat this study for different types
of sparse grids, by considering index sets as in (14) with different choices of the vector α; upon fixing the
choice of α, the convergence study will be done increasing the index sets, hence the number of sparse grid
points, by increasing w in (14). The relation between the order w and the number of sparse grid points,
which we denote from here on as Ncoll, is depicted in Figure 9 for a selected set of sparse grids.

Concerning the choice of α, we start from the observation anticipated by the results in Figure 8-right that
the position of the interfaces Ψk is predominantly influenced by the parameter ksh2 . Our choice is then to
choose α such that the resulting sparse grid will be more refined along ksh2 , while keeping the approximation
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Figure 8: Total Sobol indices for uncertain parameters referred to estimated interface positions. Results are
referred to the analyzed cases: on the left (A) only βsd and βsh are considered as uncertain and characterized
by blue and red bars respectively, while on the right (B) also ksh2 , green bars, can vary in selected space
interval.

degree identical along βsd and βsh. To do so, we consider the following four choices for α: α1 = [1 1 1],
α2 = [2 2 1], α3 = [3 3 1], α4 = [4 4 1]. Clearly, choosing α = α1 in (14) is equivalent to building an isotropic
sparse grid, i.e. using the set defined in (13), in which all parameters are identically refined. According to the
notation introduced above, the grids thus obtained should be denoted by SIαi

, with i = 1, . . . , 4; however,
we will employ a lighter notation, i.e. Sαi

. Similarly, the associated quadrature rules will be denoted by
Qαi , cf. equation (15).

We employ the following two metrics to evaluate the accuracy of the various sparse grid approximations:

• the relative error of the mean position obtained through the sparse approximation

Emean (Ψk) =
|Qαi (Ψk)− µref (Ψk)|

|µref (Ψk)|
(16)

where k = 1, . . . , 6 identifies the interfaces and µref (Ψk) is a reference value for the mean of the
interface position. We consider here as reference value the mean obtained with a very refined version
of the sparse grid SIα4

, with around 30000 collocation points.

• the maximum norm of the error of the interface position obtained with respect to the one predicted
by the full model simulation within the parameter space

Emax (Ψk) =

∥∥∥∥∥
[
Sαi

[Ψk] (p)−ΨFM
k (p)

]
ΨFM
k (p)

∥∥∥∥∥
∞

(17)

where ΨFM
k (p) is the value of Ψk obtained from the direct numerical approximation of the full model.

The metric (17) is numerically computed by employing a random sampling of the functions Sαi
[Ψk] (p)

and ΨFM
k (p) for p ∈ Γ. We consider here 1000 random evaluations to compute (17).

Figure 10 displays the two metrics Emax and Emean as a function of the number of realizations required
to build each sparse grid approximation. We consider here the variation of the two metrics for the positions
Ψ2 and Ψ5. Note that Figure 10 also reports the results on the convergence of the mean value of Ψ2 and Ψ5

computed by a straightforward Monte Carlo approximation. For interface positions Ψ3,Ψ4,Ψ6 the results
are qualitatively similar to those obtained for Ψ5 and for this reason are not reported here.
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Figure 9: The relation between the order w and Ncoll for a selected set of sparse grids: α1 = [1 1 1],
α2 = [2 2 1], α3 = [3 3 1], α4 = [4 4 1].

Results reporting the convergence of interface Ψ2 are reported in Figure 10a-b. A first observation
emerges from the comparison between sparse grid and Monte Carlo sampling technique, where the more
efficient behavior of the former is highlighted. For example, we find Emean ≈ 10−8 for a number of collo-
caction points within 60 and 200 depending on the type of sparse grid employed. For the same number of
realizations, the mean error associated with the Monte Carlo approach is close to 10−3. The position of Ψ2

is approximated with high accuracy by sparse grid surrogate models, with Emean ≈ 10−14 for Ncoll ≈ 103

(see Figure 10a) and Emax ≈ 10−12 (see Figure 10b). Among the sparse grid approximations Sα3
, Sα4

are
the least effective ones. This can be explained upon observing that Ψ2 only depends on βsd (Figure 8b),
so increasing the sampling frequency along ksh2 adds to the sparse grid points that are not improving the
quality of the approximation.

Figure 10c-d displays the results obtained for Ψ5. For this interface the sparse grid approximations
outperform the Monte Carlo approximation by a factor comprised between 10 and 100 for a fixed number
of sampling points, when metric Emean is considered (Figure 10c). Moreover, the anisotropic sparse grid
approximation Sα4

converges faster than the others (see Figure 10c-d), while in particular the isotropic
sparse grid Sα1

is the least efficient choice (as expected). This result shows that anisotropic sampling of
the parameter space yields a computational advantage if compared on isotropic one for the approximation
of deeply buried interfaces. In the remainder of this section, to test the applicability of the sparse grid
technique we select the sparse grid Sα4

and fix w = 12, which yields Ncoll = 133.
Before going further deep in the analysis of the results, we also briefly comment on the computational gain

offered by the sparse grids approximation. On a processor with clock-speed 3.30GHz and 15 MB cache, a full
model run on Matlab 8.5 takes about 2 seconds, depending on the value of the random parameters. Therefore,
comparing the results of Monte Carlo and sparse grids approximations in Figure 10c, an approximation on
the mean position of the fifth interface with a 0.1% accuracy takes about 2000× 2 = 4000 seconds (roughly
1 hour) while sparse grids need at most 300 × 2 = 600 seconds (10 minutes) with an isotropic sparse grid,
and around 50× 2 = 100 seconds (less than 2 minutes) for the anisotropic sparse grids (the time needed to
actually determining the set of evaluation points of the sparse grid is negligible). Moreover, upon obtaining
the samples needed to build the sparse grid, evaluating the position of an interface for a new value of the
random parameters is extremely efficient, in the order of a fraction of a millisecond per evaluation; the same
holds for evaluating the porosity at a given depth with the two-steps procedure described in Section 3.3.
Thus, the analyses that will be performed below, that need to evaluate the sparse grid approximation over
a Monte Carlo ensamble with a few thousand samples, can be performed in a few seconds. We also remark
that the sparse grid evaluation algorithm that we use, see [60], does not scale linearly with the number of
points to be evaluated nor with the number of points of the sparse grids, due to some internal optimizations,
therefore it would be meaningless to provide a precise value of the time needed by a single evaluation.
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(b) maximum norm trends for second interface
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(d) maximum norm for fifth interface

Figure 10: Study of the convergence of mean and maximum norm

The estimation of the material interface positions Ψi allows to estimate the probability to find a specific
material at a selected depth in the system. We deal with a conceptual model characterized by alternating
deposition of different materials which divide the domain into five macro layers, as listed in the top part of
Table 2. The probabilistic distribution of geomaterials along depth can be highly valuable when performing
history matching of real sedimentary systems. To obtain this result, we consider now a series of Nz points
between z̃k ∈ [−500,−2300]m separated by a constant interval of 10m. We then evaluate which material
M(z̃k) occurs at each of these locations, upon comparing z̃k with the estimated interface locations Ψi. Note
that since Ψi depends on the random parameters p, then M(z̃k) is also random. Figure 11 shows the vertical
distribution of probability, obtained upon computing the relative frequency Freq(M(z̃k) = Mi), i.e. the
probability of observing M(z̃k) = Mi with Mi = 1, . . . , 5. To compute Freq(M(z̃k) = Mi) we evaluate the
sparse grid approximation over a set of 5000 random points. Figure 11-left shows the vertical distribution of
Freq(M(z̃k) = Mi) evaluated through the selected sparse grid approximation. Note that for z > −1700m
a single depth is associated with nonzero probability to observe a single material or two materials, close to
the interface. For depths deeper than 1700 meters the complexity increases and a single location may be
associated with up to three different materials, i.e. M3, M4 and M5. These results provide a quantitative
assessment of the qualitative observation emerging from Figure 7b.

In Figure 11-right we complement the results in Figure 11-left upon showing the relative frequency of
misclassified realizations (Freqmis), i.e. of realizations for which the value of M(z̃k) estimated through
the surrogate sparse grid model is different from the one obtained through the direct numerical simulation
of the full model for the same parameter combination. The number of misclassified points increases with
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depth and with the probability to find more than one material at the same depth: in those regions in which
the extent of overlapping is small, i.e. between −850 < z < 950m (i.e. for locations close to Ψ2), the
frequency is lower than 0.1% while for the deepest locations considered, i.e. for 2000 < z < 2300m, the
relative frequency of misclassified point increases up a maximum value of 0.8%. This value confirms that
the implemented methodology provides a robust estimation of the material interface positions, and can be
effectively employed in practice to obtain the probabilistic estimation of the vertical extent associated with
all geological units.

4.2.2. Uncertainty quantification for porosity distributions

Finally, we investigate the propagation of uncertainty from input parameters to model outputs consid-
ering the probability density functions of porosity at different depths. In order to validate our procedure,
the results of the two-step surrogate model procedure are compared against full model results in a Monte
Carlo framework. Specifically, we consider a subset of the locations z̃k introduced above, we compute for
each of them an approximation of the pdf by sampling our sparse grid surrogate model, and we validate the
results upon comparing them with those rendered by the full model sampling. As remarked earlier, porosity
as a state variable is heavily influenced by the characteristic of the geomaterials. Since the occurrence of
up to three different materials can be observed at some locations, we expect to observe multimodal pdfs of
porosity values for those z̃k.

Figure 12 considers four depths to examine the shape of pdfs obtained with both the sparse grid and the
full model solution. In order to sample the vertical domain in a comprehensive way we show here the results
associated with four locations, one from the upper part (-600 m), two from the middle (-1350 m, -1500 m)
and one from the deepest part of the basin (-2250 m). In addition to the pdfs of porosity we also display
for each selected location a scatterplot which allows for a direct comparison between the porosity values
predicted with the sparse grid approximation and those given by the full model for the same location and
for all considered Monte Carlo realizations of the parameters. In each scatterplot we distinguish the points
associated with different materials Mi and we also explicitly tag with red markers the misclassified points
introduced above. As a preliminary remark, we observe that the porosity values found for some of the Monte
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Carlo realizations attain high values (up to 0.8) which are unlikely to be found in a real sedimentary setting
(see Figure 12). Here, we detail the results of the full analysis which may be interpreted as a preliminary
uncertainty analysis where large uncertainty bounds are assigned to model parameters. In principle, our
model reduction methodology allows then to efficiently identifying the regions of the parameter space where
those values are found and focus on a restricted set of the full parameter space upon excluding unphysical
or unrealistic combinations. These may be identified for example from an expected porosity trend which
may come from direct field observation or other prior knowledge on the system.

As a first general observation the pdfs yielded by the sparse grid approximation are in close agreement
with those obtained through the direct simulation of the full model. Some small differences are only observed
for cases where the pdfs shape have a particularly complex and multimodal shape (Figure 12c-12g ). At z̃ =
−600m we find material M1 (most recent sandstone layer), for all the Monte Carlo realizations consistently
with results in Figure 11. Figure 12a and Figure 12b show that the values of porosity obtained with the full
model and the surrogate basically coincide and span the interval between 0.35 and 0.5. Location z̃ = −1350m
is associated with similar probability of observing material M2 and M3, see Figure 11a. The shape of the
pdf in Figure 12c shows three main peaks, which can be tied to the porosity values attained within the two
materials which are found at this location across the complete set of realizations of the Monte Carlo sample.
This result is therefore informative on the compaction regime which may be observed at this location as a
function of the assumed uncertainty of the selected random parameters. In particular we observe that:

• The scatterplot in Figure 12d puts in evidence that realizations for which material M3 (sandstone) is
found at this location tend to cluster around φ ≈ 0.3, this value corresponding to the location of a
peak of the porosity pdf (see Figure 12c).

• Realizations for which material M2 (shale) is found attain values of porosity of approximately 0.75 (see
Figure 12d), which correspond to a location of a second peak of the porosity distribution (see Figure
12c). These high values of porosity are explained upon observing that the pressure gradient in shale
material may become larger than hydrostatic when shale permeability decreases (i.e. as a function
of the value assumed by the random parameter ksh2 ). In these conditions the vertical effective stress
decreases and this has a direct effect on porosity through equation (5) (see e.g., [11] for a complete
discussion of this phenomenon).

• a third peak is observed in the porosity pdf for φ ≈ 0.6, this value corresponding to the overlap of the
porosity distributions in the two materials M2 and M3. Note that a few misclassified points appear
for φ ≈ 0.5, i.e. for porosity values which are possibly found in both materials.

At z̃ = −1500m materials M2 and M3 may be found, with Freq[M(z̃k = −1500) = 3] > Freq[M(z̃k =
−1500) = 2] (Figure 11a), i.e. larger probability associated with the presence of M3 (sandstone) than M2.
as a result the porosity pdf (Figure 12e) has here two distinct peaks which are found at porosity values
consistent with those observed at depth z̃ = −1350m, i.e. φ ≈ 0.78 corresponding to shale material and
φ ≈ 0.3 for sandstone material.

Finally, Figure 12g and Figure 12h display the results obtained for location z̃ = −2250m. At this
location three different lithological units may be found as a function of the values assumed by the three
random parameters across the Monte Carlo sample (see Figure 11a): the largest probability of occurrence
is associated with material M4 (shale) followed by M5(sandstone) and M3(sandstone). In this case the
scatter plot shows a slight increase of the dispersion of the points around the bisector, which indicates that
the accuracy of the sparse grid approximation is lower than that observed for shallower locations (compare
Figure 12h e.g. with 12b). The comparison of the pdfs displayed in Figure 12g evidences however that
these inaccuracies have only a minor consequence on the estimation of the pdf of φ. Once again, we can tie
the observed probability density of φ to the occurrence of the various geomaterials and relate this to the
compaction behavior. The sandstone materials (M3 and M5) tend both to attain smaller porosity values
than the shale unit. Note that as the burial depth increases, the maximum observed porosity decreases, i.e.
we find here φ < 0.7 also within shale material M4.
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(d) scatterplot at -1350 meters
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(f) scatterplot at -1500 meters
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(h) scatterplot at -2250 meters

Figure 12: Comparison of probability density functions associated to porosity obtained with full model and
surrogate model at different depths. The color code identifying different materials in the scatterplots is the
same used in Figure 11.
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5. Conclusions

In this paper we devise a methodology for the quantification of uncertainty related to key outputs
of sedimentary basins compaction modeling, which considers the evolution along geologic time scales of
diagenesis and mechanical compaction phenomena. At these scales, information on the model parameters
is typically incomplete and the availability of an uncertainty quantification procedure which is at the same
time accurate from a numerical viewpoint and characterized by computational efficiency is of paramount
concern. Our methodology embeds reduced order (surrogate) modeling based on sparse grid sampling of
a set of unknown parameters, which are considered to be random. Our work leads to the following major
results:

1. We extend here the approach presented in [15, 16] to a case of multi-layered domain, where we have
alternating deposition of sand and shale materials. In this case, permeability can attain very low values
(typically in shale materials) and exhibit variations of several order of magnitude across layers. In this
context the fixed iteration method proposed in previous works ([15]) is prone to failure. We propose
here a novel one-dimensional solver grounded on a Newton iteration algorithm for the solution of the
fully coupled system consisting of mass, momentum and energy conservation equations, togheter with
geochemical constitutive relations along the vertical direction. The Newton iteration algorithm clearly
outperforms fixed point iterations for permeabilities within the range of those typically associated with
shale-rich materials.

2. Specific variables of the problem exhibit sharp variations moving along the vertical direction, which
are located at the interface between different geomaterials. The location of such discontinuities is
typically function of model parameters. The accuracy of polynomial approximations obtained from
standard sparse grid methods typically deteriorates in the presence of discontinuous mapping between
input parameters and output variables. We present an original approach to tackle this issue which
relies on the assumption that the depth of the interfaces among layers shows a smooth dependence on
the parameters and can therefore be accurately estimated with a sparse-grids approach. We consider a
synthetic test case characterized by realistic evolutionary scales. Mechanical compaction modulus and
shale permeability are considered as random parameters. Sobol’ indices analysis suggests that vertical
shale permeability has larger effect than vertical compaction modulus on the location of material
interfaces where discontinuities of state variables (e.g., porosity) may occur.

3. We analyze the convergence of the approximation of the interface locations obtained through sparse
grid sampling, based on the mean estimated location of the interfaces and on the maximum error with
respect to the full model simulation within the considered random parameter space. We observe that
for shallow depths the sparse grid approximation converges rapidly when increasing the number of
collocation points, independently of the strategy adopted for the sparse grid sampling approach. For
deep locations the input/output mapping becomes more complex. In such conditions, the efficiency of
the sparse grid approximation greatly improves when anisotropic sampling is performed, i.e. when the
order of the sparse grid approximation increases proportionally to the intensity of the Sobol’ sensitivity
indices associated with each parameter. The number of collocation points required to obtain a given
level of accuracy may be reduced by two orders of magnitude when considering an anisotropic sparse
grid instead of an isotropic one.

4. We finally investigate the uncertainty propagation from input parameters to model responses which
exhibit a discontinuous behavior in the parameter space, i.e. porosity, considering its probability
density function at selected depths. We compare the results obtained with the two-step surrogate model
and the full model within a Monte Carlo framework. Results suggest that the pdfs associated with the
sparse grid approximation are in close agreement with those obtained with the direct simulation of the
full model. We display for each selected location also a scatterplot which allows a direct comparison
between the porosity values predicted with the sparse grid approximation against those given by the full
model for the same location and for all considered Monte Carlo realizations of the parameters. What
emerges is that even though for deeper layers the accuracy of sparse grid approximation decrease, points
in the scatter plot exhibit an increasing dispersion around the bisector and the number of mismatched
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points increase, the entity of these inaccuracies is small enough to have only a minor consequence on
the estimation of the pdf of porosity. This result suggests that the proposed methodology is suitable
to be embedded within model calibration techniques, which will be considered in future works.
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