
Consiglio Nazionale delle Ricerche
Istituto di Matematica Applicata

e Tecnologie Informatiche
“Enrico Magenes”

REPORT S

M. Pitikakis, F. Giannini

VVS medical workflows: Definition of a
static workflow for part-based

annotation of wrist bones & web
service oriented architecture for

executable workflows

17-07

IMATI REPORT Series

Nr. 17-07

March 2017

Managing Editor

Paola Pietra

Editorial Office

Istituto di Matematica Applicata e Tecnologie Informatiche “E. Magenes”
Consiglio Nazionale delle Ricerche
Via Ferrata, 5/a
27100 PAVIA (Italy)
Email: reports@imati.cnr.it
http://www.imati.cnr.it

Follow this and additional works at: http://www.imati.cnr.it/reports

Copyright © CNR-IMATI, 2017.
IMATI-CNR publishes this report under the Creative Commons Attributions 4.0 license.

http://www.imati.cnr.it/
mailto:reports@imati.cnr.it
http://www.imati.cnr.it/
http://www.imati.cnr.it/reports
http://www.imati.cnr.it/reports

IMATI Report Series Nr. 17-07
March 22, 2017

VVS medical workflows: Definition of a static workflow for part-based annotation of wrist
bones & web service oriented architecture for executable workflows

Marios Pitikakis, Franca Giannini

Copyright © CNR-IMATI, March 2017

http://creativecommons.org/licenses/by-nc-nd/4.0/

Marios Pitikakis
Softeco Sismat S.r.l.
Via De Marini, 1 – Torre WTC
16149 Genova, Italy
e-mail address: marios.pitikakis@gmail.com

Franca Giannini
Istituto di Matematica Applicata e Tecnologie Informatiche “E. Magenes" – CNR
Via De Marini, 6
16149 Genova, Italy
e-mail address: franca.giannini@ge.imati.cnr.it

mailto:mario.pitikakis@gmail.com
mailto:franca.giannini@ge.imati.cnr.it

Abstract

The report describes the extension of the Digital Shape Workbench version 5 (DSW5) for the inclusion of workflows

for the analysis and processing of 3D models obtained from medical imaging data. The VVS Workflow

Repository (WR) manages the creation, visualization and execution of shape processing workflows. The

considered workflows are of two main categories: static and executable. The first category refers a kind of

tutorial workflow/pipeline and is used for sharing expert knowledge e.g. for explaining the steps needed

when dealing with a specific process. The second one represents chain of executable web services

performing specific pipelines of geometric processing functions. The document describes the adopted

architecture and structure for their specification and execution.

Keywords: Shape processing, semantic web, on-line repositories

[page left intentionally blank]

VVS Medical Workflows:

Definition of a Static Workflow for

Part-based Annotation of wrist bones

&

Web Service oriented architecture

for Executable Workflows

Marios Pitikakis, Franca Giannini

2

Contents

1 Abstract... 3

2 Introduction .. 4

3 Definition of a static workflow for part-based annotation 5

3.1 Categories of workflows in the Workflow Repository 5

3.2 Static Workflows .. 5

3.3 Description of the part-based annotation pipeline 6

3.4 Medical related tools inserted in the TR ... 11

4 Semantically Enriched Web Services .. 15

4.1 Ontology-Driven Service Discovery and Composition 16

5 Overview of the VVS Service-Oriented Architecture ... 17

5.1 Dynamic Workflow Composition and Execution of Web Services 20

5.2 Shape Processing Web Services and workflows .. 23

6 Implementation of Shape Processing Applications as Services 24

6.1 Development of single-step Web Services .. 24

6.2 Development of the Web Service Workflows ... 25

6.3 First Web Service Workflow Scenario .. 28

6.4 Second Web Service Workflow Scenario ... 29

7 The Web Services and workflows user interface ... 30

7.1 Single-Step Web Services ... 31

7.2 Web Services Workflows ... 33

8 Integration with the CAR2VR ontology .. 37

9 Technologies and tools used .. 40

9.1 OpenESB ... 40

Acknowledgments.. 41

3

1 Abstract
The report describes the extension of the Digital Shape Workbench version 5 (DSW5)

for the inclusion of workflows for the analysis and processing of 3D models obtained

from medical imaging data. The VVS Workflow Repository (WR) manages the

creation, visualization and execution of shape processing workflows. The considered

workflows are of two main categories: static and executable. The first category

refers a kind of tutorial workflow/pipeline and is used for sharing expert knowledge

e.g. for explaining the steps needed when dealing with a specific process. The second

one represents chain of executable web services performing specific pipelines of

geometric processing functions. The document describes the adopted architecture

and structure for their specification and execution.

4

2 Introduction
The Digital Shape Workbench version 5 (DSW5) is part of the VISIONAIR Virtual

Visualization Service (VVS) and its primary goal is the formalization and sharing of

knowledge about 3D digital shapes and their applications. DSW5 integrates

resources and knowledge into a unified interface, and consists of the data

repositories: the Shape Repository (SR), the Tool Repository (TR), the Workflow

Repository (WR), the Ontology & Metadata Repository (which is the knowledge

management system) and a number of different ways of browsing and searching for

these resources. An overview of the architecture of DSW5 is shown in Figure 1.

Figure 1. Overview of the DSW5 system architecture.

The first part of this report describes the definition of a static workflow for the

medical domain, and more specifically the pipeline from the medical image

acquisition to the part-based semantic annotation of wrist bones. The static

workflow is stored in the Workflow Repository (WR) and all the software tools

required to support each step of the pipeline were inserted in the Tool Repository

(TR).

The rest of the report introduces a semantic organization and description of Web

Services for enhancing the ability to compose processing chains (workflows) of Web

Services. Ontologies can play an important role in empowering Web Services with

5

semantics that can enable service discovery and composition. We adopt a

knowledge-based approach that effectively utilizes the existing knowledge

infrastructure of the VVS.

A generic service oriented middleware architecture was designed and developed for

orchestrating composite services and a set of shape processing Web Services were

implemented that can be easily combined into workflows.

3 Definition of a static workflow for part-based annotation

3.1 Categories of workflows in the Workflow Repository

The VVS Workflow Repository (WR) is manages the creation, visualization and

execution of shape processing workflows. The description of the workflows is stored

in the Workflow Ontology (WO), which is a process ontology that describes all the

necessary information about workflows. The Common Tool Ontology (CTO) is

imported by the WO, thus taking advantage of the already existing formalization of

tools given by the CTO.

There are two main categories of workflows in the WR: static workflows and

executable workflows.

3.2 Static Workflows

A static workflow represents a kind of tutorial workflow/pipeline and is used for

sharing expert knowledge e.g. for explaining the steps needed when dealing with a

specific process.

The WR and the underlying WO was developed with the aim of answering questions

regarding the problem of CAD to VR transition, however, it can be reused and/or

extended to also cover other domain like the medical domain in our case.

Static workflows are simple sequences of at least two steps, called activities, while

no parallel activities are allowed (i.e. steps that are performed at the same time).

The main activities composing a workflow are called macro-activities and may be

decomposed into sub-activities i.e. simple-activities. A macro-activity with no sub-

activities is considered a “simple activity”. Simple-activities are required sub-

activities of a macro-activity and the “simple” adjective is due to the fact that they

are one-step activities that correspond to a functionality of the tool performing the

activity.

For each static workflow, a domain of application can be defined. The knowledge

base formalization has been designed in such a way that other shape-oriented

6

workflows with different domains can also be addressed. More specifically, the

medical domain was added as an instance of WorkflowDomain class in the WO.

Tools performing an activity are not directly described in the WO, but are retrieved

in an indirect way. Each simple-activity is associated to a Functionality (as described

by the CTO ontology), that may be either an algorithm in the Shape Processing

domain or a simple feature of a tool that is referred as micro-functionality (as

defined in the WO). Macro-activities are not required to be directly associated to a

functionality or a tool, unless they have no sub-activities. Typically, no single tool can

perform a macro-activity but a set of tools may be required.

3.3 Description of the part-based annotation pipeline

The defined static workflow for the medical domain describes the complete pipeline

for part-based semantic annotation of wrist bones and consists of the following four

activities and their sub-activities (as show in Figure 2):

a) Acquisition of Medical Image Data: Magnetic resonance imaging (MRI)

acquisition

b) Medical image processing and analysis: Image segmentation

c) 3D reconstruction and Volume Visualization: Surface-based volume

rendering

d) Post-processing:

Figure 2. Overview of the medical static workflow definition.

The full title of the static workflow is: “Patient specific part-based semantic

annotation of 3D models”. The description of the static workflow was defined as

follows:

 The main goal of this workflow is to identify and visualize prominent features

from patient-specific 3D reconstructions of bones, annotate them with

semantic concepts and define characterizations that could potentially

support computer assisted diagnosis, therapy planning, bio-mechanical

simulation, prosthesis fitting etc. Part-based annotations can couple patient-

specific geometry and their semantics.

7

The description and functionality (according to the CTO) of each activity and sub-

activity is shown on Table 1.

Table 1: Descriptions and functionalities of all the defined activities.

Activity/sub-activity

name
Functionality Description

Acquisition of Medical

Image Data

(Acquisition)

Measurement,

Probing

In medical imaging there are various types of techniques,

equipments or probes used to acquire images, called

modalities, which can provide vital information about

the structural, chemical and electrical properties of the

human body. Each modality is based on different

physical phenomena and thus captures different types of

information.

Magnetic resonance

imaging (MRI)

acquisition

(Acquisition)

Measurement,

Probing

Magnetic resonance imaging (MRI) is based on

measuring the resonating frequency (or spin) of atoms

under magnetic fields and is able to capture cross-

sectional images of the body using non ionizing

radiation. Image contrast in MRI is determined due to a

number of factors including the biochemical

environment of water molecules, the movement and

diffusion of fluid and the density of water molecules in

tissue. Consequently, MRI provides much greater

contrast between the soft tissues of the body than

computed tomography. This makes MRI especially useful

in musculoskeletal, oncological (cancer) and neurological

imaging.

Medical image

processing and analysis

Other

functionality

Medical image processing and analysis techniques

extract clinically relevant information from radiological

data. Image analysis is crucial for many diagnosis and

therapy planning tasks and is often carried out as a

pipeline of individual steps in which quantification and

visualization are the final goals.

Image segmentation Segmentation

Image segmentation usually represents the core of

image analysis. This process assigns labels (unique

identifiers) of anatomical or pathologic structures to

parts (segments) of the image data. Image segmentation

is often a sophisticated, time-consuming process that

produces geometric descriptions of the relevant

structures. The goal of segmentation is to simplify and/or

change the representation of an image into something

that is more meaningful and easier to analyze.

8

Segmentation of organs/bones/tissues is necessary to

determine important characteristics such as the size,

shape or volume of anatomical structures.

3D reconstruction and

Volume Visualization
Visualization

Imaging modalities such as CT, MR, PET and ultrasound

can acquire not only projective 2D images but also cross-

sectional images of the human body. 3D medical

visualization is the process of generating images from

raw medical data to gain insight into its qualitative and

quantitative features. While clinicians can gain some

insight from visualizing 3D data as a series of 2D slices, a

3D reconstruction of the data provides a much richer and

highly comprehensive view of the structures contained in

the image, due to our implicit ability to perceive 3D

shapes.

Surface-based volume

rendering
SurfaceMeshing

Volume data can be visualized by generating an

intermediate representation, which is subsequently

rendered i.e. indirect volume rendering (primarily

surface-based visualization). Structures of interest in

volumetric data are typically differentiated from the

surrounding image data by a boundary; hence, the

resulting surface on these voxels is called an isosurface.

There are a lot of methods for surface-based

visualization, like Contour Tracing, the Cuberille Voxel

Representation and the Polygonal Isosurface Extraction

(Marching Cubes algorithm).

Post-processing
Other

functionality

Most modern Computer Aided Detection/Diagnosis

(CAD) systems and software rely on post-processing

operations on medical image volume data. Such

operations include for example the calculation of

diagnostic parameters, the evaluation of measurements,

the annotation of anatomical structures etc.

Part-based semantic

annotation
Annotation

Part-based annotations are focused on identifying and

visualizing prominent features of anatomical structures

and annotating/characterizing them with semantic

concepts that could support the diagnosis, monitoring

and follow-up of patients.

A screenshot of the medical static workflow when browsing the Workflow

Repository is shown in Figure 3.

9

Figure 3. Browsing the Workflow Repository for medical workflows.

The medical workflow was inserted in the Workflow Repository using the web user

interface as shown in Figure 4 and Figure 5.

10

Figure 4. Inserting a static workflow from the web UI.

Figure 5. Filling the workflow information

11

3.4 Medical related tools inserted in the TR

To support the medical static workflow, several state-of-the-art tools were inserted

in the Tool Repository (TR) (see Table 2) that can be used to process and manipulate

digital shapes for research and visualization purposes. More specifically, eleven (11)

tools were inserted: 3 instances of the Library class and 8 instances of the

IndependentApplication class.

In addition, the following instances were inserted in the ShapeFormat class of the TR,

which are related with the medical domain: dcm, dicom, nifti, nrrd, mha, mhd, vtk,

avi, ps, png, tiff, sem3D, segs

Table 2. Detailed description of the inserted tool instances in the TR.

Category: Library

hasName: GDCM (Grassroots DICOM library)
hasDescription: Grassroots DICOM (GDCM) is an open source implementation of the DICOM
standard so that researchers may access clinical data directly. GDCM includes a file format
definition and a network communications protocol, both of which should be extended to
provide a full set of tools for a researcher or small medical imaging vendor to interface with
an existing medical database.
hasFunctionality: Visualization, Other
hasInputFormat: dcm, dicom, jpg
writtenWithProgrammingLanguage: C++
hasDevelopmentStatus: stable
 hasURL: http://gdcm.sourceforge.net
hasExecutionPlatform: Windows, Linux, Mac OS, other UNIX
hasLicense: Other (BSD, Apache license)
hasSourceCodeURL: http://sourceforge.net/projects/gdcm/

hasName: ITK (Insight Segmentation and Registration Toolkit)
hasDescription: Insight Segmentation and Registration Toolkit (ITK) is an open-source, cross-
platform system that provides developers with an extensive suite of software tools for
image analysis. Developed through extreme programming methodologies, ITK employs
leading-edge algorithms for registering and segmenting multidimensional data.
hasFunctionality: Registration, Segmentation
hasInputFormat: dicom, nrrd, mha, mhd, vtk, bmp, jpg, png, tiff
hasOutputFormat: dicom, nrrd, mha, mhd, vtk, bmp, jpg, png, tiff
writtenWithProgrammingLanguage: C++
hasDevelopmentStatus: stable
 hasURL: http://www.itk.org/
hasExecutionPlatform: Windows, Linux, Mac OS, other UNIX
hasLicense: Other (BSD, Apache license)
hasSourceCodeURL: http://www.itk.org/ITK/resources/software.html

hasName: VTK (The Visualization Toolkit)
hasDescription: The Visualization Toolkit (VTK) is an open-source, freely available software
system for 3D computer graphics, image processing, and visualization. It consists of a C++

http://gdcm.sourceforge.net/
http://sourceforge.net/projects/gdcm/
http://www.itk.org/
http://www.itk.org/ITK/resources/software.html

12

class library and several interpreted interface layers including Tcl/Tk, Java, and Python. VTK
supports a wide variety of visualization algorithms including scalar, vector, tensor, texture,
and volumetric methods, as well as advanced modeling techniques such as implicit
modeling, polygon reduction, mesh smoothing, cutting, contouring, and Delaunay
triangulation. VTK has an extensive information visualization framework and a suite of 3D
interaction widgets. The toolkit supports parallel processing and integrates with various
databases on GUI toolkits such as Qt and Tk.
hasFunctionality: Visualization, Modeling, Meshing, Smoothing, Triangulation,
hasInputFormat: 3ds, stl, obj, vtk, ply, xyz, dicom, mha, mhd, bmp, jpg, png, tiff
hasOutputFormat: stl, obj, wrl, vtk, ply, avi, mha, mhd, bmp, jpg, png, tiff, ps
writtenWithProgrammingLanguage: C++
hasDevelopmentStatus: stable
 hasURL: http://www.vtk.org/
hasExecutionPlatform: Windows, Linux, Mac OS, other UNIX
hasLicense: Other (BSD license)
hasSourceCodeURL: http://www.vtk.org/download/

Category: IndependentApplication

hasName: RheumaSCORE
hasDescription: RheumaSCORE helps radiologists and physicians during the medical
investigation and the diagnostic processes related to the management of clinical progression
of patients suffering from Rheumatoid Arthritis (RA). RheumaSCORE leads the user during
the three-dimensional segmentation process of the bones structure using the Geodesic
Active Contour approach. After segmentation, RheumaSCORE provides automatical
evaluation of the bones erosion scoring (using OMERACT RAMRIS criterion) and can visualize
the generated 3D models. RheumaSCORE stores all the information related to a patient
examination (e.g. acquired DICOM images, anatomical 3D segmented elements, three-
dimensional features results, user annotations) in the system database for retrieval so that
the user can visualize the follow-up of a patient. It also provides automatic comparison
among the parameter results and evaluates the difference between pairs of contiguous
values in time, showing interactive plots with highlighted temporal trends. RheumaSCORE
was developed by Softeco Sismat S.r.l.
hasFunctionality: Segmentation, Visualization, SurfaceMeshing
hasInputFormat: dcm, dicom
hasOutputFormat: mha, mhd, vtk
writtenWithProgrammingLanguage: C++
hasDevelopmentStatus: stable

hasUIType: Graphical UI
 hasURL: http://www.research.softeco.it/rheumascore.aspx
hasExecutionPlatform: Windows
hasLicense: Commercial

hasName: VolSeg
hasDescription: VolSeg is generic purpose segmentation tool that can assist users during the
image segmentation and 3D model generation process. VolSeg can load all kind of DICOM
data e.g. MRI, CT, PET, US etc. images and allows the user to experiment with different
segmentation methods and parameters to achieve the desired results. VolSeg is intended for
users with some experience in image segmentation techniques, algorithms and methods.
The user can fine-tune several algorithm parameters, which provides a lot of flexibility, but
this may require previous knowledge of the applied algorithm functionality and usage.

http://www.vtk.org/
http://www.vtk.org/download/
http://www.research.softeco.it/rheumascore.aspx

13

VolSeg was developed by Softeco Sismat S.r.l.
hasFunctionality: Segmentation, Visualization, SurfaceMeshing
hasInputFormat: dcm, dicom, mha, mhd
hasOutputFormat: mha, mhd, vtk
writtenWithProgrammingLanguage: C++
hasDevelopmentStatus: Beta

hasUIType: Graphical UI
hasExecutionPlatform: Windows
hasLicense: Commercial

hasName: ITK-SNAP
hasDescription: ITK-SNAP is free, open-source, and multi-platform software application used
to segment structures in 3D medical images. ITK-SNAP provides semi-automatic
segmentation using active contour methods, as well as manual delineation and image
navigation. In addition to these core functions, ITK-SNAP offers many other supporting
utilities.
hasFunctionality: Segmentation, Visualization
hasInputFormat: dcm, dicom, nifti, mha, mhd
hasOutputFormat: dcm, dicom, nifti, mha, mhd
writtenWithProgrammingLanguage: C++
hasDevelopmentStatus: stable

hasUIType: Graphical UI
 hasURL: http://www.itksnap.org
hasExecutionPlatform: Windows, Linux, Mac OS, other UNIX
hasLicense: GPL
hasSourceCodeURL:
http://www.itksnap.org/pmwiki/pmwiki.php?n=SourceCode.SourceCode

hasName: Paraview
hasDescription: ParaView is an open-source, multi-platform data analysis and visualization
application. Users can quickly build visualizations to analyze their data using qualitative and
quantitative techniques. The data exploration can be done interactively in 3D or
programmatically using ParaView’s batch processing capabilities.
hasFunctionality: Visualization
hasInputFormat: dcm, mha, mhd, vtk, xyz, ply, obj, wrl, bmp, jpg, png, tiff
hasOutputFormat: stl, obj, wrl, vtk, ply, avi, mha, mhd, bmp, jpg, png, tiff
writtenWithProgrammingLanguage: C++
hasDevelopmentStatus: stable

hasUIType: Graphical UI
 hasURL: http://www.paraview.org/
hasExecutionPlatform: Windows, Linux, Mac OS, other UNIX
hasLicense: Other (BSD license)
hasSourceCodeURL: http://www.paraview.org/download/

hasName: 3D Slicer
hasDescription: 3D Slicer, is a free, open source software package for visualization (including
volume rendering) and image analysis (including registration and interactive segmentation)
of medical images and for research in image guided therapy. It supports multi-modality
imaging including MRI, CT, US, nuclear medicine, and microscopy.
hasFunctionality: Visualization, Registration, Segmentation
hasInputFormat: dicom, dcm, nifti, nrrd, mha, mhd, vtk, stl, obj, bmp, jpg, png, tiff
hasOutputFormat: dicom, nifti, nrrd, mha, mhd, vtk, stl, bmp, jpg, png, tiff

http://www.itksnap.org/
http://www.itksnap.org/pmwiki/pmwiki.php?n=SourceCode.SourceCode
http://www.paraview.org/
http://www.paraview.org/download/

14

writtenWithProgrammingLanguage: C++
hasDevelopmentStatus: stable

hasUIType: Graphical UI
 hasURL: http://www.slicer.org/
hasExecutionPlatform: Windows, Linux, Mac OS, other UNIX
hasLicense: Free
hasSourceCodeURL: http://www.slicer.org/pages/SourceCode

hasName: MITK (The Medical Imaging Interaction Toolkit)
hasDescription: The Medical Imaging Interaction Toolkit (MITK) is a free open-source
software system for development of interactive medical image processing software. MITK
combines the Insight Toolkit (ITK) and the Visualization Toolkit (VTK) with an application
framework. As a toolkit, MITK offers those features that are relevant for the development of
interactive medical imaging software covered neither by ITK nor VTK.
hasFunctionality: Visualization, Diffusion, Registration, Segmentation
hasInputFormat: dicom, nrrd, mha, mhd, vtk, bmp, jpg, png, tiff
hasOutputFormat: dicom, nrrd, mha, mhd, vtk, bmp, jpg, png, tiff
writtenWithProgrammingLanguage: C++
hasDevelopmentStatus: stable

hasUIType: Graphical UI
 hasURL: http://mitk.org/wiki/The_Medical_Imaging_Interaction_Toolkit_%28MITK%29
hasExecutionPlatform: Windows, Linux, Mac OS, other UNIX
hasLicense: Other (BSD license)
hasSourceCodeURL: http://mitk.org/wiki/Downloads#MITK_Source_Code

hasName: SemAnatomy3D
hasDescription: SemAnatomy3D provides a rich set of tools for 3D shape analysis that
supports semantic annotation of patient-specific 3D models with concepts derived from the
ontology and quantitative attributes.
hasFunctionality: Annotation, 3D shape analysis, Erosion detection
hasInputFormat: off, vtk, vrml
hasOutputFormat: txt, sem3D, segs
writtenWithProgrammingLanguage: Java
hasDevelopmentStatus: Alpha
isAvailableAtInfrastructure: IMATI
hasUIType: Graphical UI
 hasURL:
hasExecutionPlatform: Windows
hasLicense:
hasSourceCodeURL:

hasName: OsiriX
hasDescription: OsiriX is an image processing software dedicated to DICOM images. OsiriX
has been specifically designed for navigation and visualization of multimodality and
multidimensional images: 2D Viewer, 3D Viewer, 4D Viewer (3D series with temporal
dimension, for example: Cardiac-CT) and 5D Viewer (3D series with temporal and functional
dimensions, for example: Cardiac-PET-CT). OsiriX supports a complete dynamic plugins
architecture. The 3D Viewer offers all modern rendering modes: Multiplanar reconstruction
(MPR), Surface Rendering, Volume Rendering and Maximum Intensity Projection (MIP). All
these modes support 4D data and are able to produce image fusion between two different
series (PET-CT and SPECT-CT display support). OsiriX is at the same time a DICOM PACS
workstation for imaging and an image processing software for medical research (radiology

http://www.slicer.org/
http://www.slicer.org/pages/SourceCode
http://mitk.org/wiki/The_Medical_Imaging_Interaction_Toolkit_%28MITK%29
http://mitk.org/wiki/Downloads#MITK_Source_Code

15

and nuclear imaging), functional imaging, 3D imaging, confocal microscopy and molecular
imaging.
hasFunctionality: Visualization
hasInputFormat: dcm, dicom, jpg, png, tiff, avi
hasOutputFormat: dcm, dicom, jpg, tiff
writtenWithProgrammingLanguage: Objective-C
hasDevelopmentStatus: Stable
isAvailableAtInfrastructure:
hasUIType: Graphical UI
 hasURL: http://www.osirix-viewer.com
hasExecutionPlatform: MacOS
hasLicense: LGPL
hasSourceCodeURL:

4 Semantically Enriched Web Services
The semantic organization and description of Web Services is a crucial requirement

for enabling the effective composition of Web services. Our primary objective is to

demonstrate how formalizing, sharing and re-using expert knowledge can effectively

improve shape processing and scientific computations in general. Our aim is to

provide a framework that can support the development of sophisticated

(“intelligent”) services which can be utilized according to user’s needs or context.

This can be achieved via a structured information space where resources are

documented with reference to domain specific ontologies, enabling efficient

discovery and access for both humans and computer programs. By linking workflow

definitions back to the ontology, it is possible not only to find resources (data and

programs/tools) that can be combined into workflows but also to find workflows

which can produce data objects of a given class/category that are automatically

annotated with metadata according to the AIM@SHAPE Common Shape Ontology.

Our approach towards a system architecture and implementation combines the

principles of Web Services and the Semantic Web to support geometry processing

tasks/activities for a given application domain. The specification of dynamic

processes brings together, at runtime, a set of functional elements in order to

implement an application-specific functionality.

The main benefits of our approach is mainly focused on the fact that data can be

produced dynamically as a combination of other existing data and programs/tools,

combined together as workflows. Hence, it is possible not only to discover and

access the currently available objects but also to generate new ones by launching a

computation. In addition, when a computation finishes the produced data can be

http://www.osirix-viewer.com/

16

automatically annotated with metadata that capture its provenance, and can be

stored in the ontology-driven knowledge base of the VVS.

What is equally important is the classification of the tools / workflows functionality

at a semantic level. In our case, the focus is on assigning this functionality in

components that are well-documented and at the same time easily accessible

though Web Services. This is implemented via ontologies that contain concepts

(classes) and instances (objects) of resources relevant to the particular application

domain. The properties of these resources are described via metadata which also

contain information about the location and protocols/interfaces through which they

can be accessed or invoked. Such an organization greatly simplifies the task of

navigation and searching in a large information space.

We can identify three kinds of semantic descriptions: data semantics, functionality

semantics and user task (process) semantics. Data semantics of shape objects are

captured by ontology-driven metadata. Functionality semantics are formalized by

the application of (Semantic) Web Services. Processing task semantics are formalized

through workflows.

The notion of a workflow, defined as an ordered sequence of tasks or activities,

related by data and control flow relationships, is used to describe the computational

aspect of the creation of processing pipelines. A task is typically performed by

executing a program or invoking another process.

4.1 Ontology-Driven Service Discovery and Composition

By augmenting web services with semantic descriptions can result in a more

automatic management of these services. Specifically, web service discovery,

composition and mediation can become dynamic, with software agents able to

reason about the functionalities provided by different web services, to locate the

best ones for solving a particular problem and to automatically compose the relevant

web services into workflows and build applications dynamically.

Service composition is not a trivial problem. It must be as less manual as possible

(preferably fully automatic) and deal with discovering complex service combinations,

conditions and preferences requirements. The purpose of discovery in the context of

abstract workflow mediation is to provide mechanisms for finding services which can

deliver the missing pieces of information or can bridge the identified

incompatibilities by exploiting the knowledge stored in the system.

Enabling access to scientific applications and tools using a service-oriented approach

allows the tools developers to focus on the domain science, and delegate the

17

management of the complex back-end resources to others who are more proficient

in SOA middleware.

We address these problems by developing a conceptual and technological platform

able to encapsulate 3D resources into a semantic layer for efficient storage, retrieval

and reuse of these resources. This objective is achieved by providing access to

existing scientific and computational resources and by allowing users to assemble

these resources together in order to generate complex functionalities based on Web

Service workflows. The capability to compose complex services strongly depends on

the conceptualization of the domain. The conceptualization of the relevant concepts

and the relations among them are represented by ontologies able to capture expert

knowledge.

The development of the VVS knowledge-based system included the following:

 Formalization of domain knowledge through ontologies, starting from the

basic building blocks (tools, services, applications, data sets), that allow a

shared understanding of the domain and make explicit descriptions of

generic functionalities.

 Grouping of basic functional elements in order to implement application-

specific functionality. This is addressed by the development of Web Service

workflows.

 Incorporation of semantics into service descriptions and service composition

through the use of loosely coupled, reusable software components.

 Knowledge discovery that can help the users assemble relevant information

for effective decision-making and semantically enriched services, to improve

their capability to perceive and utilize system knowledge. This can also help

the users discover and assemble services into processes for easier and better

quality of workflow executions.

5 Overview of the VVS Service-Oriented Architecture
Composing services together is a challenge for SOA middleware meeting e-Science

environments and scientific computing. The variety of services requires the

development of models, techniques and algorithms in order to create composite

services and execute them. Composing services is technically performed by chaining

interfaces using a syntactic or semantic method of matching.

18

The specification of a service composition requires dealing with two major issues:

service description and orchestration. Services are perceived as black-box

components with well-defined interfaces, they are accessed using XML message

exchanges and metadata in the form of WSDL are used to describe abstract

interfaces and concrete endpoints.

The execution order and conditions of such a workflow are specified through an

orchestration model/language. The generation of composite services requires a clear

and unambiguous description. In a SOA-enabled environment, we build application

workflows by orchestrating various services in the right order (sequencing,

conditional behavior etc.) via BPEL1. BPEL supports the description of abstract and

executable processes.

The orchestration of executable processes is then deployed and executed by a

workflow engine in a Java Business Integration (JBI2) enabled platform (see Figure

6Errore. L'origine riferimento non è stata trovata.). JBI provides an open application

integration framework, is built on a Web Services model and provides a pluggable

architecture for different Service Engines (SE). It is a standard meta-container for

integrating service containers that can host service producer and consumer

components (service units). OpenESB3 implements an Enterprise Service Bus (ESB)

runtime using JBI as the foundation. This allows easy integration of web services to

create loosely coupled enterprise class composite applications. It also provides

various tools for the development, deployment, and management of composite

applications.

The Java EE Service Engine acts as the bridge between Java EE applications and JBI. A

Java EE application archive (ear/war/jar) can be packaged in a JBI composite

application and be deployed in a JBI server. We are using the JBI runtime that has

been integrated with our GlassFish application server.

1 https://en.wikipedia.org/wiki/Business_Process_Execution_Language

2 https://en.wikipedia.org/wiki/Java_Business_Integration

3 https://en.wikipedia.org/wiki/Open_ESB

https://en.wikipedia.org/wiki/Business_Process_Execution_Language
https://en.wikipedia.org/wiki/Java_Business_Integration
https://en.wikipedia.org/wiki/Open_ESB

19

Figure 6. Service oriented JBI architecture

Our architecture, presented in Figure 7, is organized into three layers. The first layer

includes a set of scientific applications and tools. The second layer contains

associated Web Services. These Web Services could be either simple or composite.

Some of the simple Web Services just wrap applications and tools defined in the first

layer. Composite services are generated as processing chains (workflows) of simple

(single-step) Web Services. The third layer includes the service composition

component, the BPEL service engine and a Web client GUI and manager. Three types

of requests are submitted through the GUI: discovery, invocation, and composition

of Web Services into workflows. During the service composition process, there is

communication with the knowledge base for discovery and selection of services. It is

also possible to utilize stored workflow templates (abstract workflow definitions) for

the generation of new processing services. These abstract workflows are stored in

the form of deployed BPEL modules.

20

Figure 7. The semantically enriched Web Service architecture

5.1 Dynamic Workflow Composition and Execution of Web Services

Dynamic selection and composition of Web Services is increasingly used to automate

either scientific or business processes. There are three different ways to invoke a

Web Service:

 static binding

 dynamic binding

 dynamic invocation

With static binding the client is compiled and binded at development time. This

binding is tightly bound to one and only one service implementation. It provides the

fastest performance but gives the least flexibility.

With dynamic binding the only part of the client that is compiled at development

time is the interface to a service type (i.e. the WSDL portType definition). At runtime

the client can bind to any service implementation that supports that portType. It

generates a dynamic proxy from the service's WSDL binding at runtime and casts it

to the interface. There is a slight performance reduction though, but in exchange you

21

win a lot of flexibility. Using this technique, the application is able to connect to any

number of different service implementations without modification.

With dynamic invocation, there is no need to compile anything at development time.

Instead everything is done at runtime. The application retrieves and interprets the

WSDL at runtime and dynamically constructs calls. This method gives the most

flexibility, but also requires a much more sophisticated client and there is a decrease

in terms of performance, which occurs on each invocation.

Partner links describe interfaces (messages and operations), transport protocol, and

most importantly, the location of each service to be used. BPEL processes call these

external services using information stored in the partner links. The partner links

define operations and message types that make up the interface to the service using

portTypes in WSDL. portTypes also indirectly define the transport used to

communicate with the service (bindings) and the location of the service (service

address).

Commonly, process designs in BPEL include static partner links that refer to a single

external process selected by the developer at design time. This approach is

appropriate for most systems; however, scientific workflow processes are more

complex. They could interact with multiple external services and define multiple

partner links, and some of these partner links might not be known at design time. As

a result, all potential callouts and logic for deciding which partner links to use is

usually built inside the business process itself, unnecessarily complicating that

process. Furthermore, as additional services are added, the resulting process grows

more and more unwieldy, as any changes to the partner links require modification of

the entire process.

In our implementation we are using the dynamic binding technique. This approach

eliminates the need to anticipate and manage all relationships at design time. The

BPEL language supports the concept of dynamic binding of partner links by shielding

processes from web service changes and letting the system manage partner links

dynamically at runtime.

The WS-Addressing4 standard provides a mechanism called endpoint references

(EPR) that allows selecting one of the available services or even defining new

services at runtime. The process statically depends on the interface information

defined in the portType whereas an endpoint reference (which maps the binding to

4 Web Services Addressing 1.0 – Core http://www.w3.org/TR/ws-addr-core/

http://www.w3.org/TR/ws-addr-core/

22

the service) allows us to redefine the service location dynamically. In essence, the

endpoint reference is a dynamic alternative to the static service element defined in

the WSDL. In our case, the process/workflow designer can remain isolated from the

decision about which services to call as long as those services conform to a standard

(common) interface.

In our approach we use our knowledge-based framework for dealing with service

composition and orchestration. Instead of creating hard-coded service discovery and

routing logic, we utilize dynamic knowledge-driven service selection and binding

mechanisms, triggered by predefined knowledge captured in the ontology.

This framework is used for:

(a) Service selection to control how concrete service endpoint references are

assigned to abstract process activities. Specific policies for service endpoint

selection could be used to find the best suited service instead of manual

selection.

(b) Controlling runtime rebinding by user-defined service preferences and

constraints to enable automatic knowledge-based selection of service

endpoints. Usually policies attached to process activities are matched with

services in order to find an optimal configuration that satisfies required user

preferences and constraints. The selection could cover several QoS criteria

such as performance, accuracy, reliability, availability, cost etc.

Ontology-driven knowledge controls the way discovery, selection, and binding are

managed at runtime. Dynamic (late) binding is the process of transparently mapping

an abstract service to a concrete service instance at runtime. Web Services registries

do not provide support for dynamic binding. Hence, the service client is responsible

for service selection and rebinding. Typically, the client queries the registry based on

certain criteria, retrieves a list of services and then manually selects one service and

tries to invoke it. The limitations of this approach become evident especially when

dynamic rebinding becomes necessary. The main problem is that the service client is

responsible for taking all corrective actions (e.g., re-querying the registry for new

service bindings, polling the registry for possibly new services, etc.). This requires

considerable client-side code since current registries (and their APIs) do not provide

support for implementing such dynamic binding.

Furthermore, the logic for discovering and selecting the best service (according to

some criteria) cannot be easily encoded to the registry. Most registries are organized

according to some kind of taxonomy and are using keyword search for service

discovery. In addition, most registries focus on business / commercial Web Services

23

and are usually insufficient for scientific Web Services where relationships between

classes need to be defined or semantic searching is required. Because of these

limitations, we are not using UDDI or ebXML registries. Instead, we rely on our own

ontology-based repository (OMR) for managing and querying the services metadata.

Our approach aims to address the aforementioned limitations. Dynamic binding is

handled transparently in combination with the service discovery. The service

selection and (re)binding are enforced by our knowledge-based middleware. The

latter queries our repository to find services matching the given criteria. Based on

the available services and knowledge stored to or inferred from the ontology, the

user selects the service that best fulfils the functional constraints.

Our runtime platform relies on the OpenESB5 BPEL service engine to execute a

process, is able to trigger dynamic binding when needed to support composite

scientific workflows and can be easily integrated with the NetBeans IDE and

GlassFish application server.

5.2 Shape Processing Web Services and workflows

Due to the intrinsic complexity of 3D models, ontology-driven metadata are

necessary in order to reach a sufficient level of expressiveness and semantic impact.

Metadata provide a thorough characterization of models by capturing information

related to the processing history of an object, the possible actions that can be

performed to it (e.g. smoothing, simplification, enhancement etc.), or the

tools/services that can use it as input or produce it as output.

In addition, the formalization of the relations among tasks/activities (e.g. workflow

steps), programs/tools (e.g. Web Services) and data (e.g. 3D models) is necessary to

specify processing pipelines. The Common Tool Ontology (CTO) can support the

description of workflows by using the concept of SoftwareTool.

The concept Functionality represents all the possible different tasks/activities a tool

can provide (e.g. Triangulation, Voxelization, Filtering etc). Instances of these

functionalities can have references to specific tools in the Tool Repository or

executable Web Services.

Typically, a requestor/user applies a specific task on a particular shape, whereas

service providers publish generalized descriptions of their service capabilities that

will enable clients to find them. For effective service selection to occur, functionality

5 http://www.open-esb.net/

http://www.open-esb.net/

24

queries should be more abstract and include information about how the task should

be achieved, and under what constraints/conditions. This use of abstract

functionality descriptions is one of the reasons we developed the Functionality class

hierarchy of the Common Tool Ontology.

6 Implementation of Shape Processing Applications as Services
Our objective is to demonstrate how formalizing, sharing and re-using expert

knowledge can effectively improve scientific computing in general and shape

processing in particular, especially focused on the medical domain. By embedding

semantics and domain knowledge in the different stages of processing, we enhance

the 3D processing pipeline, allow the re-use of valuable resources (e.g., existing

content, processing tools/services, workflows), contribute to efficient resource

discovery and support the composition and execution of workflows. All of the above

can improve the different kinds of medical diagnosis procedures, can contribute in

the monitoring and treatment of patients, and ultimately assist and support medical

professionals in a wide range of clinical decision-making, research, teaching and

learning activities.

6.1 Development of single-step Web Services

With the use of the MeshLab6 mesh processing system, we exported several 3D

shape processing tools as Web Services. We selected a subset of the most commonly

used filters in geometry processing in general, which are also used in medical shape

processing.

MeshLab is a free and open-source general-purpose mesh processing system, which

was developed by ISTI-CNR in the framework of the EPOCH Network of Excellence. It

is designed to help the flow and adaptation of 3D models that typically occur in the

pipeline when processing 3D data. MeshLab provides many mesh processing

functionalities.

To enable web access to a selection of MeshLab tools, we wrapped them into Web

Services using the command line version of MeshLab (meshlabserver) which takes as

input an XML formatted "filter script" i.e. sequences of filtering actions.

More specifically, the following thirteen (13) Web Services are currently

implemented and available:

6 http://meshlab.sourceforge.net/

http://meshlab.sourceforge.net/

25

 Cleaning: Remove Duplicate Faces, Remove Duplicate Vertex

 Smoothing: Laplacian Smooth, Smooth Face Normals, Two Step Smooth

 Reconstruction: Poisson Surface Reconstruction

 Simplification: Clustering Decimation, Quadric Edge Collapse Decimation

 Sampling: Clustered Vertex Subsampling, Regular Recursive Sampling,

Stratified Triangle Sampling

 Meshing: Marching Cubes (APSS), Marching Cubes (RIMLS)

Each of the developed Web Services is described by a set of metadata information

and is classified according to the Functionality hierarchy of the Tool Common

Ontology (TCO). Every service is associated to a Software Tool instance in the TCO

ontology and more specifically to the WebService class.

6.2 Development of the Web Service Workflows

Composing services into a workflow, given specific target functionalities, implies to

deal with the following:

 the services discovery and selection;

 the service composition and orchestration according to a specific

functionality;

 to automate the composition process as much as possible.

We used the SOA module of the NetBeans IDE (integrated with OpenESB and

GlassFish) for the development of our Web Services, the BPEL process modules, the

composite applications and the web user interfaces. The Web Services and all the

other web modules are deployed using the GlassFish application server which

provides not only server-side infrastructure for deploying and managing services, but

also client-side API for invoking those services.

Figure 8 gives an overview of the developed service endpoints (WSDL ports), the JBI

module with all our BPEL processes and the connections between them (WSDL

bindings). This design view has been created using the Composite Application Service

Assembly (CASA) editor provided with NetBeans.

26

Figure 8. Design view of the developed BPEL processes.

The designer views of our BPEL process diagrams are shown in the following figures.

Figure 9Errore. L'origine riferimento non è stata trovata. illustrates the designer

view (BPEL editor from NetBeans) of our abstract task implemented with dynamic

endpoint reference (dynamic binding). The purpose of this abstract task is to be able

to invoke any kind of Web Service implementing the same interface.

27

Figure 9. BPEL editor view of our abstract task with dynamic binding.

Figure 10 gives the design of a single-step execution service which invokes the

abstract task process shown in Figure 9, i.e. the partner link on the right in Figure 10

corresponds to the partner link on the left in Figure 9. This can be considered as a

special case workflow containing only one step.

The designer’s views of our two workflow scenarios are given in the following

sections.

28

Figure 10. BPEL editor view of a single abstract task execution step.

Two geometry processing workflows were developed (more details are given in the

following subsections) where service discovery and selection is done semi-

automatically. The user can select appropriate services, using a functionality-based

discovery method, for each abstract task (or Activity class, as it is defined in the

Workflow Ontology) of the workflow.

The following scenarios demonstrate the generic concepts of pre-processing,

polygonal surface generation or reconstruction and post-processing, using two

different pipelines.

6.3 First Web Service Workflow Scenario

The first workflow scenario was defined as follows:

This is the first of the predefined workflow templates that can be found in the VVS

and represents a way to capture expert knowledge. The designer view of the above

abstract workflow scenario (BPEL process diagram) is shown in Figure 11.

29

Figure 11. BPEL editor view of our first abstract workflow scenario.

6.4 Second Web Service Workflow Scenario

The abstract workflow description for the second scenario was defined as follows:

The designer view of the above abstract workflow scenario (BPEL process diagram) is

shown in Figure 12.

30

Figure 12. BPEL editor view of our second abstract workflow scenario.

7 The Web Services and workflows user interface

The Web Services UI provides a way to dynamically

execute the available Web Services and Web Service

workflows is currently available here: http://visionair-

v1.ge.imati.cnr.it/ws/

A new subsection called “Executable Web Services” was

added at the left side menu of the Workflows

Repository. There are two main options: a) to execute a

single-step web service and b) to execute one of the pre-

defined dynamic web service workflows.

http://visionair-v1.ge.imati.cnr.it/ws/
http://visionair-v1.ge.imati.cnr.it/ws/

31

7.1 Single-Step Web Services

The list of currently available Geometry Processing Web Services is shown in Figure

13. The user interface dynamically generates this list from the instances of the TCO

class WebService. Additional information about each service is provided when the

mouse pointer goes over the service name (tooltips). This information is also

dynamically generated from the values of the datatype property called

hasDescription. Additional information are also available by clicking on the “see

more details” link, where the user is redirected to the web service description at the

Tool Repository. By selecting a single-step service and pressing the execution button,

the specific Web Service is invoked.

Figure 13. The user interface of a single-step Web Service selection.

After the Web Services selection, the user uploads the input model, or selects an

existing model from the Shape Repository (SR), and initiates the workflow execution

(see Figure 14). More details about acceptable input formats are given at the web

service page. The list of existing model from the Shape Repository is dynamically

generated according to the allowed input formats of the selected web service.

It is also possible to save the output model to the Shape Repository. If the user

selects this option (see Figure 15), all the necessary metadata are automatically

generated.

32

Figure 14. Upload an input model or select an existing model from the SR.

Figure 15. Ready to execute the selected web service

33

An example web service execution result page is shown in Figure 16. A summary of

the output log is displayed (as generated by MeshLab) and the resulting output file is

provided as a link and can be downloaded by the user.

Figure 16. Single-step web service execution result page (without saving the

resulting model to the SR).

7.2 Web Services Workflows

The Web Services workflows page has currently two pre-defined dynamic workflows

(see Figure 17), as described in the previous section.

The web interface of the first workflow scenario shows the abstract workflow

definition (functionality descriptions) in a diagram and the user is prompted to assign

concrete service instances to each task/activity of the abstract process. The selection

of the specific Web Service instances is done from drop-down menus that are

dynamically generated using the Functionality property of the Software Tool class i.e.

the user selects specific web services that can be used to perform an abstract task

(see Figure 18 for the first workflow and Figure 19 for the second workflow).

34

Figure 17. The web services workflows initial page.

Figure 18. Selecting concrete web services for the execution of the first workflow.

35

Figure 19. Selecting concrete web services for the execution of the second workflow.

After the Web Services selection for each workflow abstract task, the user uploads

the input model, or selects an existing model from the Shape Repository, and

initiates the workflow execution (similarly to the single-step web service). As

described in section 4.1, the services are dynamically binded to each task of the

abstract BPEL process.

Finally, a short summary of the execution log is displayed and the resulting output

model is provided for download. In addition, as with the single-step web service, the

workflow execution can automatically produce the appropriate metadata for the

resulting (output) model i.e. processing history, documentation and other details

(e.g. number of vertices, number of faces, model origin, file size and file format,

location and URL etc.) and the resulting model and its metadata can automatically be

stored back to the knowledge base if the user selects the corresponding option (see

Figure 20).

Note that saving the generated model to the Shape Repository (SR) involves a

number of steps: a) create a new ontology instance in the appropriate class/category

of the Common Shape Ontology (e.g. ManifoldSurfaceMesh) and a new FileInfo

instance, b) calculate and fill automatically some of the metadata (e.g. number of

vertices, number of faces etc), c) update the SR cache table, d) generate

36

automatically a new thumbnail (applicable only for mesh models), e) compute the

MT and signature of the model and added them in the Geometric Search Engine

(GSE) database.

Figure 20. Result page of the second executable web services workflow and saving

the resulting model to the SR.

37

8 Integration with the CAR2VR ontology
The two web service workflows described in the previous sections were inserted in

the Workflow Ontology as instances of the class WorkflowExecutable, along with

their workflow tasks (as instances of the Activity class). These two workflows mainly

deal with the generation of a digital model from a physical object. The digital model

may be further processed and several post processing tools can be applied to the

digital model, depending on the application domain.

These new workflows can also be found in the Workflow Repository through the

“Browse workflows” page (see Figure 21). The wf_cache tables were updated as

well.

Figure 21. Browsing for executable workflows in the Workflow Repository.

In addition, two new domains were added as instances to the WorkflowDomain

class: “Generic geometry processing” and “Medical”.

Table 3 below shows all the instances created in the Workflow Ontology to support

these new web service workflows.

38

Table 3. Detailed description of the inserted instances in the Workflow Ontology.

Instances of WorkflowExecutable class

hasName: From acquisition to reconstruction workflow 1
hasDescription: This generic template workflow is related to the task of generating a digital
model from a physical object (from the acquisition to the final reconstruction of the model).
Several post processing actions can be applied to the digital model, depending on the
application domain. This workflow contains the following categories of activities: Cleaning of
scanned data, Mesh smoothing & reconstruction and Simplification. Upon execution, the
user selects specific available web services that can be used to perform each of these
abstract activities.

hasName: From acquisition to reconstruction workflow 2
hasDescription: This generic template workflow is related to the task of generating a digital
model from a physical object (from the acquisition to the final reconstruction of the model).
Several post processing actions can be applied to the digital model, depending on the
application domain. This workflow contains the following categories of activities: Sampling
of scanned data, Meshing, Simplification and Smoothing & Fairing. Upon execution, the user
selects specific available web services that can be used to perform each of these abstract
activities.

Instances of SimpleActivity class

hasName: Cleaning of scanned data
hasDescription: Removing unwanted data, regions or elements (faces, vertices etc) from a
model.
isActivityOf: From_acquisition_to_reconstruction_workflow_1
correspondToFunctionality: GeometryImprovement
precedes: Mesh_smoothing_and_reconstruction
follows:

hasName: Mesh smoothing and reconstruction
hasDescription: Building a surface mesh using a specific surface reconstruction
method/approach. Before the reconstruction the model can be smoothed first.
isActivityOf: From_acquisition_to_reconstruction_workflow_1
correspondToFunctionality: Reconstruction, Smoothing
precedes: Simplification
follows: Cleaning_of_scanned_data

hasName: Simplification
hasDescription: A method/algorithm for simplifying a mesh i.e. reducing the number of
faces used in a surface mesh while keeping the overall shape, volume and boundaries
preserved as much as possible.
isActivityOf: From_acquisition_to_reconstruction_workflow_1
correspondToFunctionality: GeometricSimplification
precedes:
follows: Mesh_smoothing_and_reconstruction

hasName: Sampling of scanned data
hasDescription: Selecting only a subset of the scanned data. The desired number of samples
is usually smaller than the mesh size and can vary according to the chosen sampling strategy.
isActivityOf: From_acquisition_to_reconstruction_workflow_2
correspondToFunctionality: Sampling
precedes: Meshing
follows:

hasName: Meshing

39

hasDescription: Meshing algorithms compute a triangular mesh approximating of a surface.
The algorithm computes a set of sample points on the surface, and extract an interpolating
surface mesh from the three dimensional triangulation of these sample points, until some
size and shape criteria on the elements of the surface mesh are satisfied.
isActivityOf: From_acquisition_to_reconstruction_workflow_2
correspondToFunctionality: Meshing
precedes: Simplification_2
follows: Sampling _of_scanned_data

hasName: Simplification_2
hasDescription: A method/algorithm for simplifying a mesh i.e. reducing the number of
faces used in a surface mesh while keeping the overall shape, volume and boundaries
preserved as much as possible.
isActivityOf: From_acquisition_to_reconstruction_workflow_2
correspondToFunctionality: GeometricSimplification
precedes: Smoothing_and_Fairing
follows: Meshing

hasName: Smoothing and Fairing
hasDescription: Smoothing a polygon mesh improves the quality of the model (e.g.
Denoising, Filtering etc). Mesh Fairing reduces the variation in curvature.
isActivityOf: From_acquisition_to_reconstruction_workflow_2
correspondToFunctionality: Smoothing, Fairing
precedes:
follows: Simplification_2

Instances of WorkflowDomain class

hasName: Generic geometry processing

hasName: Medical

40

9 Technologies and tools used
The enabling technologies used for the development and deployment of this

application are summarized in Table 4.

Table 4: Enabling technologies for development and deployment of the web

application.

Product/technology Version Role

Java EE 8u45 Platform for the Java programming language

Netbeans

(or OpenESB IDE 2.3.1)
6.5 or 7.0

Integrated Development Environment (IDE) for software

developers.

GlassFish with JBI 2.1.1 Application server with integrated JBI service engines.

OpenESB v2 Tools for building Integration and SOA applications.

BPEL 2.0 Web service orchestration.

9.1 OpenESB

For the development of web services and web service workflows, the OpenESB7 was

used. OpenESB is a Java-based open source enterprise service bus. It is used as a

platform for both enterprise application integration and service-oriented

architecture (SOA). OpenESB is open-source and relies on standard JBI (Java Business

Integration), XML, XML Schema, WSDL, BPEL and Composite application that provide

simplicity, efficiency and long-term durability.

The JBI specification defines two component types: The services engine (SE) and the

binding component (BC):

 Binding components act as the interface between the outside world and the

bus, being able to generate bus messages upon receipt of stimuli from an

external source, or generate an external action/interaction in response to a

message received from the bus.

7 http://www.open-esb.net/

http://www.open-esb.net/

41

 Service engines receive messages from the bus and send messages to the

bus. SE’s have no direct contact with the outside world. They rely on the bus

for interaction with other components, whether binding components or

other service engines.

Acknowledgments
The work has been carried out within the Regional PAR-FAS project “I-REUMA

Imaging non invasivo dedicato per diagnosi precoce e follow-up delle patologie

reumatiche del distretto mano-polso”. The authors thank Marina Monti, Stefano

Gagliardo for the work carried out during the CAD2VR ontology specification within

the VISIONAIR project, and Giuseppe Patanè, Marco Attene, Daniela Cabiddu,

Michela Spagnuolo for the useful discussions on the workflow specifications in the

medical domain.

IMATI Report Series Nr. 17-07

__

Recent titles from the IMATI-REPORT Series:

2017

17-01: BPX preconditioners for isogeometric analysis using analysis-suitable T-splines, D. Cho, R. Vázquez.

17-02: Initial-boundary value problems for nearly incompressible vector fields, and applications to the Keyfitz and Kranzer system,
A. P. Choudhury, G. Crippa, L.V. Spinolo.

17-03: Quantitative estimates on localized finite differences for the fractional Poisson problem, and applications to regularity and
spectral stability, G. Akagi, G. Schimperna, A. Segatti, L.V. Spinolo.

17-04: Optimality of integrability estimates for advection-diffusion equations, S. Bianchini, M. Colombo, G. Crippa, L.V. Spinolo.

17-05: A mathematical model for piracy control through police response, G.M. Coclite, M. Garavelllo, L.V. Spinolo.

17-06: Uncertainty Quantification of geochemical and mechanical compaction in layered sedimentary basins, I. Colombo, F. Nobile,
G. Porta, A. Scotti, L. Tamellini.

17-07: VVS medical workflows: definition of a static workflow for part-based annotation of wrist bones & web service oriented
architecture for executable workflows, M. Pitikakis, F. Giannini.

