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Abstract 

 

The document reports some of the main issues related to the semantic annotation of medical data 

acquired from MRI scans and describes possible solutions. 
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1. Introduction

Computational methods play a prominent role in supporting collaborative investigation of the hu-
man body, as foreseen by the Virtual Physiological Human framework, especially for supporting
descriptive and predictive actions. This is particularly relevant for computational methods involv-
ing the processing of anatomical structures and the simulation of complex physiological systems,
such as the musculo-skeletal one. In this context, the semantic characterisation of elements can
offer advantages, thus here we provide an overview of the existing most pertinent ontologies and
annotation tools. Then, we describe the main acquisition methodologies, processing and seg-
mentation methods of medical data, with a specific attention to the case of bones and tissues of
musculo-skeletal atlases. The segmentation methods of 2D or 3D images are reviewed according
to different factors, such as the degree of user interaction; computational cost; underlying method-
ologies, which include image or volume processing; use of prior information; and support to se-
mantic annotation. Then, we introduce the stages of the rheumatoid arthritis, the main characteris-
tics of the analysis of baseline and follow-up data; in particular, we focus on the Omeract-Ramris
scoring system. Finally, we describe quantitative methods for the evaluation of the rheumatoid
arthritis and detail the proposed morphological analysis of follow-up data. Then, the extracted
information can be associated with the input data through the semantic annotation and can be used
by experts to compare follow-up data or to compare the same pathology for different patients.
Results with a main focus on the wrist sectors are presented.

The report is organized as follows: we introduce the semantic annotation of biomedical data (Sec-
tion 2), the morphological analysis of MRI images for semantic annotation (Section 3) and the
workflow for the morphological analysis and annotation of biomedical data (Section 4).

2. Semantic annotation of biomedical data

We now introduce the ontologies (Section 2.1) used for the semantic annotation of biomedical data
(Section 2.2).

2.1. Ontologies for semantic annotation of biomedical data

Knowledge formalization techniques provide a possible way to build a formal framework to orga-
nize data at the various biological scales which contribute information related to the digital patient
(shared conceptualization). Based on this integrated view, various modalities to access and visu-
alize data, concepts and information relevant to characterize diseases can be devised. Knowledge
specification can be also used to bridge properly the morphological, structural and functional as-
pects of medically-relevant parts of the human body and used to navigate interactively the data
and its properties (e.g. anatomical information and image orientation).

For the aforementioned purposes, ontologies are efficient tools for structuring and storing different
types of information and their dependencies. Ontologies are not new in the medical domain: they
have been introduced and used since years in order to systematize medical knowledge. Also, the
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importance of semantics-driven annotation of medical data has been subject of many scientific
and technological efforts and supported the development of systems to support clinicians in their
activities.

Existing biological and medical ontologies offer complementary information (e.g., geometric/-
topological information, disease evolution) on the human body and its functioning or diaseses.
Some of them also make available navigation, browsing, and search modalities, which suggest
new ways to exploit the multi-scale and multi-modal nature of the knowledge captured.

Ontology usage in the medical context. One of the most prominent advantages of ontology is that
it can provide a common vocabulary. According to this role, the uses of ontologies in medicine
started with focus on the representation and (re-)organization of medical terminologies e.g. FMA
(Foundation model of anatomy), International classification diseases, Systematized Nomenclature
of Medicine (SNOMED).

Given the advancement of semantic web technologies, the scenario of bio-medical ontology de-
sign and usage is evolving: beside common terminology, ontologies can also be used to manage
structural, functional, and morphological information extracted from the medical data. The devel-
opment of ontologies has therefore been considered also to support computational frameworks for
clinical decision (e.g., OntoQuest) or to study the human anatomy and the functional behavior of
the organ in a more interactive way (e.g., MyCorporisFabrica).

Making one step further, linking the clinical knowledge with the geometry extracted from the pa-
tient record is likely to open a new pathway for clinical analysis. In medicine, this knowledge
could be useful to drive automated analysis to support diagnosis, therapy planning, surgery, radio-
therapy, and legal medicine. In the following, a brief description of the most considered and used
ontology is provided:

• Medical Subject Headings (MeSH) 1, is a controlled vocabulary thesaurus defined and
maintained by the National Library of Medicine’s. It is aimed at indexing and retrieving
medical literature. It consists of sets of naming descriptors hierarchically structured to allow
searching at various levels (up to thirteen) of specificity. Among the considered top-level
categories, we can find Anatomy which includes the various bone organization, and Diseases
listing the various pathologies. The thesaurus includes terms’ synonymies and is available
in different languages, thus providing certificate terminology (no Italian version available).

• International Classification of Diseases (ICD)2 serves as a detailed index of known dis-
eases and injuries. It provides codes to classify diseases and a wide variety of signs, symp-
toms, abnormal findings, complaints, social circumstances and external causes of injury or
disease. It is conceived as the standard diagnostic tool for epidemiology, health management
and clinical purposes. This includes the analysis of the general health situation of popula-
tion groups. It is used to monitor the incidence and prevalence of diseases and other health

1
https://www.nlm.nih.gov/mesh/meshhome.html

2
http://apps.who.int/classifications/icd10/browse/2010/en
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problems. It has been translated into 43 languages and its main usage is for supporting the
compilation of national statistics.

• Foundational Model of Anatomy (FMA)3 represents anatomical entities ranging from bi-
ological macromolecules to cells, tissues, organs, organ systems, and major body parts,
including the entire body. It is strictly constrained to ”pure” anatomy, i.e., the structural
organization of the body. The FMA is concerned with the representation of classes and
relationships necessary for the symbolic modeling of the structure of the human body in
a form that is both understandable to humans without wrong interpretation and navigable
by machine-based systems. The FMA is one of the largest computer-based knowledge
sources in the biomedical sciences. It contains approximately 75,000 classes and over
120,000 terms; over 2.1 million relationship instances from over 168 relationship types
link the FMA’s classes into a coherent symbolic model. It has four interrelated compo-
nents: Anatomy taxonomy, Anatomical Structural Abstraction, Anatomical Transformation
Abstraction, and Metaknowledge. The first one classifies anatomical entities according to
the characteristics they share (genus) and by which they can be distinguished from one an-
other. The second component specifies the part-whole and spatial relationships that exist
between the entities. The third component specifies the morphological transformation of the
entities represented in At during prenatal development and the postnatal life cycle. The last
one indicates the principles, rules and definitions according to which classes and relation-
ships in the other three components of FMA are represented. In summary, this model serves
as the reference domain ontology for the discipline of anatomy and provides a template for
evolving biomedical domain ontologies (e.g., PRO, the Physiology Reference Ontology).

• Systematized Nomenclature of Medicine (SNOMED) [30] aims to provide comprehen-
sive coverage of the health care domain such as diseases, findings, procedures, microorgan-
isms, pharmaceuticals. It is one of the most comprehensive clinical terminology available. It
allows a consistent way to index, store, retrieve and aggregate clinical data across specialties
and sites of care and also helps to structure and computerize the medical record. One of the
interesting features of SNOMED is that in addition of giving a detailed and linked structural
description of anatomical entities as well as micro-level entities, it allows to link instances
of such structures to clinical procedures to reduce the encoding variability for clinical care.
Certified translations in various languages have been provided (no Italian version available).

• RADLex4 is a controlled terminology project from the Radiological Society of North Amer-
ica (RSNA). Its aim is to provide a uniform or standard lexicon for indexing and retrieval
of a variety of radiology data to be used for teaching, research and reporting procedures. It
unifies and supplements other lexicons and standards, such as SNOMED-CT and DICOM.
In particular, the Playbook ontology module provides a standard system for naming radiol-
ogy procedures, based on the elements that define an imaging exam such as modality and
body part. By adopting the best features of existing terminology systems and producing

3
http://bioportal.bioontology.org/ontologies/1053

4
http://www.radlex.org/
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new terms to fill critical gaps, it provides the basis to obtain operational and quality im-
provements, such as workflow optimization, radiation dose tracking, enterprise integration
and image exchange.

• My Corporis Fabrica(MyCF)5 focuses on the formalization of anatomical knowledge and
suggests its computational representation for anatomy modellng. The main objective is to
increase the development of new 3D technologies and knowledge systems, based on seman-
tics, ontologies and statistics. It also provides a framework to manage the links between
abstract anatomy and real patient to produce relevant physical anatomical models through
virtual representations of human body.

• MultiScaleHuman Ontology6 has been developed by CNR-IMATI and includes a formal-
ization of the following aspects: MSH Glossary, which describes the main terms of the
MSH Ontology with a short explanation of each; MSH Data Ontology, which provides all
the metadata necessary to describe the data used by the MSH Partners, in particular MRI,
micro-CT, 3D shapes, and simulation data: MSH Knee District Ontology, which contains
the anatomy description for the knee district and the lower limb (e.g., organ identities, adja-
cency relations useful for anatomic reasoning); MSH Simulation Ontology, which describes
the information relevant to the characterization of motion simulation and evaluation, includ-
ing references to landmarks used for simulation and motion capture; MSH Cell Ontology,
which contains terms and relations for the representation of the knowledge related to cells
of tissues and bones, according to the needs of tissues’ analysis and characterization. The
MSH Disease Ontology contains a formal description of MSH-relevant musculoskeletal dis-
eases and it is mainly based on the usage of the ICD Ontology - International Classification
of Disease. The MSH Ontology is intended to support the development of a knowledge-
based system which offers functionalities for the storage, access to and visualization of
patient-specific data, such as raw data (e.g., MRI, PET-MRI, Micro-CT data), motion cap-
ture data, processed, segmented, and simulation data, as instances of the classes of the MSH
Ontology. The knowledge-based system gives the possibility to document and characterize
software tools for data processing, visualization, and segmentation, and it offers services
for browsing and searching, data and information visualization, and semantic annotation of
data (Sect. 2.2).

2.2. Semantic annotation

Most of the existing medical image visualization software (OsiriX, Yadiv, 3DSlicer) allow the user
to mark the ROI inside the images (manually or automatically) and tag it with user-defined obser-
vations (free-text). However, manually added keywords are unable to capture objective meaning
of the targeted data. In fact, the textual abbreviation reflects the perspective and interest of the
user only, without placing the annotation in a diagnostic workflow that could be shared by other

5
http://www.mycorporisfabrica.org/

6
http://www.ge.imati.cnr.it/index.php/activities/projects?layout=edit&id=

129
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clinicians. Additionally, annotation expressed in natural language, is also influenced by several
factors, such as language or context, and they can be limited or ambiguous. Indeed, it could be
convenient to use the free text annotation in an isolated interpretation environment, but it may not
provide meaningful results in a network-based collaborative scenario.

In knowledge-driven annotation, anatomical and pathological terms are fixed and defined by an
underlying formalized knowledge. While, the formalized semantics of the annotation ensures a
common and shared understanding, at the same time, it restricts the use of an exhaustive set of
terms and allows the annotation only with the ‘controlled vocabulary’. Semantic annotation can
go beyond familiar textual annotation, and makes the annotations computationally accessible. For
example, a MRI data set annotated with conceptual tags ‘FMA:Knee joint’ can be interpreted as
- it captures the spatial representation of ‘FMA:Knee joint’ that has constitutional parts, such as
‘FMA:Lateral meniscus’, ‘FMA: Patellar Ligaments’ etc., which implies that the visual content
of MRI data set also represent ‘FMA:Lateral meniscus’ and ‘FMA: Patellar Ligaments’. Thus the
annotation refers not only to the textual tag but also to the concept ‘FMA:Knee joint’, which has
formal definition in FMA [41]. Controlled annotations can dramatically increase the performance
of an data retrieval system by representing annotation in a computer-accessible way.

We identified a few platforms that has been developed for exploring 3D anatomical atlas (canon-
ical). Some of them used static database to manage pre-defined anatomical labels: for instance,
the Medical Information Service [27] and the Zygote body (previously known as Google body
browser) [10]. In contrast, Bio-digital Human [39] stores the pointers of the web-resources (wiki,
books) to support the association of external source of information along with the static labels. To
illustrate canonical representation of human anatomy, these 3D atlases are fabricated by using syn-
thetic data tagged with generic information, such as anatomy labels, its synonyms, function of the
organ, etc. To disseminate a more realistic picture of visuo-spatial relationships of anatomy, Vox-
elMan - Intelligent volume [46], W3D-VBS [52] and other web-based three-dimensional anatomy
training systems use realistic images (using axial, coronal, sagittal views) and 3D virtual structures
generated from Visible Human data set [2] annotated with pre-defined labels. BodyParts3D [34]
platform creates the link between canonical models and structured knowledge by populating the
FMA [42] with 3D models of body parts of distinct individuals, and allows a hierarchical naviga-
tion through the FMA ontology. Finally, we mention (Section 2.1)

• the MSH semantic annotation platform (standalone), which supports the semantic anno-
tation of multi-modal medical data through the integration of 3D surface characterization
algorithms and the MSH domain knowledge. It also provides a user-friendly interface for
the (semi-)automatic part-based annotation of patient-specific data (mostly 3D) with the
concepts formalized in the MSH domain ontology, calculated/measured clinical parameters,
shape characterization, user insight etc.;

• the MSH data sharing and retrieval platform (web-based), which supports user-guided in-
teraction for data uploading, searching, and navigation, information filtering/refinement,
knowledge visualization, and user management.

7



(a) (b)
Bone One-side Hausdorff distance
Capitate - 10.2 58.3 - 44.2 - 13.6 57.4
Hamate 12.2 - 48.2 - - - - 7.5
Lunate 58.2 48.2 - - 17.3 - - 60.3
Pisiform - - - - - - - 44.7
Scaphoid 44.1 - 17.3 - - - 19.5 -
Trapezium - - - - 34.9 - 60.1 -
Trapezoid 12.7 - - - 19.6 60.1 - -
Triquetal 57.2 7.5 60.4 44.1 - - - -

(c)

Figure 1: (a) One-side Hausdorff distance and (b) carpal bones. Arrows are a pictorial representations of distances.
(c) Adjacency matrix for the wrist and intra-bones distance variation between the follow-up and the baseline.

3. Morphological analysis of MRI images for semantic annotation

We discuss the data segmentation and morphological analysis of anatomical districts (Section 3.1)
and their semantic annotation (Section 3.2).

3.1. Background on data segmentation and morphological analysis of anatomical districts

We briefly review the segmentation of medical data (Section 3.1.1) and their morphological anal-
ysis (Section 3.1.2) for the characterization of rheumatoid arthritis (Section 3.1.3), which have
been applied to the proposed approach for the morphological characterization and annotation of
segmented 3D medical data.

3.1.1. Data segmentation

Nowadays, medical data are acquired through different modalities, such as radiography, comput-
erized tomography, ultrasound, positron emission tomography, and magnetic resonance imaging.
Multimodal modalities (e.g., PET-MRI, MRI-CT) have been introduced to fuse different informa-
tion and to give a broader characterization of anatomical structures. Their main open issues are the
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alignment and fusion of different data types, sources, and resolutions. Segmentation of medical
images is challenging due to several factors, such as data anisotropy, noise, non-uniform intensity,
partial volume effects, data complexity and variability among individuals.

Medical data are segmented into target structures through thresholding, clustering, deformable
models, and atlases. Thresholding [36, 45] segments images according to the pixel intensity.
Region-growing methods [25] group pixels according to a homogeneity criterion through an ex-
pansion process that starts at predefined seed locations. Their main issue is the sensitiveness to
noise and over-segmentation, which are generally solved by imposing the homotopic consistency
between the initial and segmented region. Both thresholding and region growing generally use a
low prior information (e.g., specific thresholds, seeds) on the input data, with no reference to the
underlying geometric structure. Clustering techniques [6], such as the k-nearest and fuzzy c-means
algorithms [17, 55], segment the input data through an iterative partitioning of each class and the
evaluation of its properties, such as planarity, Euclidean distance, etc. Their main issues are the
sensitiveness to local noise and inhomogeneous intensity, and the inclusion of geometric and/or
topological information. Graph-cut techniques [12], such as the fuzzy connectedness [53], the wa-
tershed algorithm [54], and the image transform [21], are typically applied to a graph whose nodes
are the image pixels and whose edges encode relations among them. Deformable models [33, 49]
effectively segment medical data through the expansion of contours or surfaces driven by image-
based forces that evolve to equilibrium. The underlying continuous approximation is stable to data
noise and resolution. Atlas-based segmentation maximizes the prior information to overcome the
data variability, noise, low gradients, and resolution. Generic anatomy atlases are designed using
modeling software and include the anatomical structures and their relationships. Patient-specific
anatomy models are the output of a scanning device and include a statistical shape for each struc-
ture. Atlas-based segmentation [38] adapts a reference scheme to patient-specific data through an
iterative application of linear or non-linear transformations. Image and shape primitives, whose
identification is based on the intensity values and topological/geometric properties, are interpreted
through anatomical knowledge and user expertise.

For the segmentation of bones and tissues of musculo-skeletal districts, statistical methods, such
as intensity thresholding and maximum likelihood, do not give reliable results, due to bone over-
lapping and smooth intensity changes. Region growing is sensitive to the seed points and can
merge bones if they are separated by weak boundaries. Watershed segmentation can result in over-
segmentation if the image is noisy or if a structure has zones with different intensities. Deformable
models [47] (e.g., snakes, bubbles, and geodesic active contours) require the user interaction for a
proper initialization and generally perform well on the wrist sector. For the segmentation of soft
tissue, Baudin et al. [4] report an automated random walk algorithm with prior knowledge applied
to 3D (voxel) muscle segmentation from MRI images. Malattia et al. [32] applied an automatic
method based on statistical segmentation (e.g., maximum likelihood) to detect synovia volume
(i.e., swelling detection) in 3D MRI images. Langs et al. [29] developed an automated method
that has been applied to X-ray projection to compute joint space value.
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3.1.2. Morphological analysis of segmented images

Literature on 3D semi-automatic erosion detection is mainly focused on algorithms’ validation
against a reference value, obtained by the Omeract-Ramris scoring system [7]. Semi-automatic
procedures aim to improve the reproducibility and sensitivity of the semi-quantitative scoring sys-
tems [40], and different methods [8, 14, 31] have been validated on images and on surface meshes.
High or low field MRIs can be used with negligible differences on erosion detection [19]. Le-
ung et al. [31] proposed a global measures (e.g., volume) for monitoring the erosion progression.
Comparing a sequence of bones acquired at different times with a reference atlas, they found an
unexpected volume fluctuation in time, which does not identify a clear erosion as a matter of an
inaccurate identification of the boundaries of segmented bones.

In [18], a semi-automated analysis of the carpal bones district from CT images is based on a
segmentation that starts with a manually seeded edge detection and progresses with an automated
active contour method. Multiple iterations of the active contour method on each slice produce
the final segmentation. Indeed, the expert judgment has a crucial role in the discrimination of
anatomical structures, especially if they are separated by weak boundaries. Local assessment is
performed by monitoring only specific regions, which are identified as lesions. Cartilage damage
assessment, which is useful for the early stage detection and monitoring of the disease, can be
performed through the analysis of its thickness.

To train users of Omeract-Ramris, Ejbjerg et al. [19] developed an atlas with example images for
the semi-quantitative scoring of synovitis, bone oedema, and erosion. Moving towards computer-
aided assessments, Bird et al. [7] investigated the inter-reader reliability of computer-assisted
(manual) erosion volume measurement in patients with rheumatoid arthritis and compared the
results with the existing Omeract-Ramris scoring system. They found a strong positive correlation
between the total erosion volumes and scores for all acquisitions, and a positive agreement between
the manual evaluation of volumetric erosion by OsiriX [1] and the Omeract-Ramris classification.
However, the inter-reader reliability was not sufficient to perform consistent multi-center studies,
at least without a prior and homogeneous training of the users.

3.1.3. Rheumatoid arthritis: stages and features

We briefly report [50] the evolution of rheumatoid arthritis (RA), identifying those aspects that
have a clinical interest and can be detected by image analysis. RA is a chronic systemic disease
that involves soft tissues (e.g., synovial tissue), cartilages, and bones of the peripheral joints. The
temporal evolution of the disease is non linear and the disease stages evolve from reversible to
permanent, depending on the involved structures. The early stage of RA involves synovial tissue,
with a change in its properties that cause a subsequent contamination of cartilages and bones. The
bones inside the synovial capsule are partially covered by cartilage and present bare zones in direct
contact with the synovial layer, which are sites of the first stages of erosion.

The capability of the acquisition methodology to accurately discriminate among bones and sur-
rounding tissues is crucial for the quantitative assessment of bone erosion in RA. MRI images
show a good contrast both for bones and for soft tissues in their immediate neighborhood, thus
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Figure 2: (a) Segmented wrist district, (b) baseline (orange) and follow-up (grey) data, (c) co-registration. (d,e)
Identification of local erosions of single bones and (f) eroded volume. The colormap varies from blue (lowest distance)
to red (highest distance).

allowing an accurate detection of erosion even with respect to CT [23], [22], once an accurate
definition of “erosion” has been provided [24]. Indeed, MRI can be assumed as a reference ac-
quisition technology for RA diagnosis and monitoring, due to its ability to detect early stages [23]
and local erosion with respect to CT [16].

RA stages can be divided into two groups, with or without effects on the geometry of hard struc-
tures, such as bones and cartilages. In the first group, we include early stage inflammation, syn-
ovitis, and effusion; in the latter group, we consider the joint space narrowing and erosion. Early
stage inflammation, visible as an hyperemia, and synovitis, characterized by swelling and effu-
sion, are detected by contrast-enhanced MRI [11]. These stages can regress completely and can
be correlated to subsequent erosion [26]. Effusion is generally detected with contrast-enhanced
combined MRI sequences and with ultrasound. Joint space narrowing is a symptom of disease
progression caused by cartilage destruction, which consists in a reduction of the distances between
adjacent bones in a joint [37], and is considered at the boundary between the two groups. Erosion
of cartilage and bones is detected with MRI, CT, and US, and consists of a local loss of material
in a bone. Massive erosion leads to relevant volume changes, bones destruction and creation of
intra-articular loose bodies by cartilages and bones fragments.

The Rheumatoid Arthritis Magnetic Resonance Image Scoring (Ramris) for the evaluation of RA
has been defined by the Outcome Measures in Rheumatology Clinical Trials (Omeract) [7]. This
semi-quantitative system standardizes the acquisition technique for RA images and the scoring
criteria. Synovitis, bone edema and erosion are evaluated separately. Synovitis is assessed on a
scale from 0 to 3 (none, mild, moderate, and severe), edema on a scale from 0 to 3 (none, one
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Figure 3: Local erosions of two wrist districts.

third, two thirds, and full), and erosions on a scale from 0 to 10 (none, 10%, 20%, 30%, . . .) and
on radiological appearance. Low field MRI scanners are used for this purpose, as their diagnostic
adequacy was demonstrated in [20].

In a semi-quantitative method based on discrete scoring systems, a small change in the image
appearance can result in a change of score (if the original score is near a threshold), thus reducing
the ability of the system to detect small changes (e.g., between two different populations in an
epidemiological approach), and requiring large populations to observe significant results. Results
obtained by user-based methods suffer from the influence of intra- and inter-observer agreements.
Ramris scoring system suffers from both these aspects.

A main open issue is the inclusion of patient-specific anatomical data and information to sup-
port clinical trials. iPad [44] extends the functionality of the popular image viewing platform
OsiriX [43] for adding semantic tags from the RadLex ontology [28] to 2D acquired images
through a simple user interface. However, the process is mostly manual and can only support
the annotation of DICOM images. The Medico system [48] applies an automatic detection and
localization of anatomical structures within CT scans of the human torso and maps them to the
concepts that are derived from FMA[42]/ICD10[51]/RadLex[28]. However, this approach is ap-
plicable only for CT data sets of human torso, and verified only within a small set of sample
images. 3DSlicer, a medical image visualization tool [35], attempts to annotate the organs seg-
mented from images by a hierarchical structure of pre-defined anatomical labels to provide a flavor
of semantic annotation of patient-specific data.

3.2. Morphological analysis for semantic annotation

The input to our process is a set of low-resolution and up-sampled MRI images of complete joints,
which are segmented with a geodesic active contour method [13] and are associated with a se-
mantic label. For the carpal bones of the wrist district, the labels are: capitate, hamate, lunate,
pisiform, scaphoid, trapezium, trapezoid, and triquetral.

For the analysis of a single exam (e.g., bone or complete joint), intra-bones distances are computed
on the basis of anatomical atlases, where couples of neighbor bones are identified in the joint
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by the corresponding entries of an adjacency matrix (Figure 1c). The intra-bones distance be-
tween two adjacent bones X, Y is computed as d(X,Y) := max{dX(Y),dY(X)}, where dX(Y) :=
maxx2X{miny2Y{kx� yk2} is the one-side Hausdorff distance. Each distance is then stored and
compared with the following acquisitions to evaluate the joint space narrowing.

For the analysis of series of exams, we perform a shape registration and a local distance evalua-
tion to identify shape changes and eroded regions. To avoid errors related to the joint mobility,
the shape registration (Figure 2(b,c)) is achieved by minimizing the `1 norm of each couple of
corresponding bones, through an iterative closest point algorithm [5, 15]. For the detection and
quantification of local morphological variations (e.g., erosion) on a bone with respect to its base-
line, we apply the two-side Hausdorff distance computed between the co-registered shapes. For
each vertex of the baseline surface (Figure 2(d,e)), the distance of the closest vertex of the follow-
up surface is rendered according to a color map, where blue and red identify small and large
distance values, respectively. Exploiting this correspondence, a set of “eroded parts” is built on
the baseline shape by coupling the vertices of each triangle of the baseline surface with the cor-
responding closest vertices of the follow-up surface. Then, the volume of each eroded part is
computed and gives a quantitative local information that is less affected by the global variability
of the pipeline (Figure 2f). This information on the position of the eroded regions (Figure 3), their
area and volume variation is annotated in the segmentation. In Figure 4, we show the annotation
of the bones of different patients and identification of morphological features (red regions) asso-
ciated with a different level of variation with respect to the corresponding baseline. Each level is
annotated together with its region. The color coding and the 3D model facilitate the inspection of
the annotated areas by the medical doctor.

Pipeline repeatability assessment on the hand-wrist district. To evaluate the variability associated
with the user-guided segmentation process, we consider a set of low-resolution MRI images (0.20
Tesla, 256⇥256⇥104; x,y,z spacing 0.55 mm, 0.55 mm, 0.60 mm). Considering the voxels’ di-
mension, the relative errors for intra-bones distance and global volume evaluation are about ±15%
and ±25%, respectively. Inter-observer and intra-observer agreements of global bone volume
computation were evaluated with a data set of 117 and 32 bones, respectively. Three expert users
segmented all the bones, and results were compared and analyzed by Bland-Altman statistics [9].
Inter-observer agreement analysis for each couple (useri vs. user j), i, j = 1,2,3, gives biases and
confidence bounds (±1.96 ·s) of �0.5± 20.0%, �18.1± 27.2%, �11.1± 29.6%. Intra-observer
agreement analysis gives limits of agreement (±1.96 ·s) of �3.2±19.5% for user1, 0.7±16.5%
for user2, and �4.2±13.3% for user3, user2. Given the geometric complexity and scale of the
wrist sector, we conclude that this variability is due to the image quality; in fact, these results are
in agreement with the evaluation of the relative errors based on image.

Follow-up volume variation and joint space narrowing. A set of 120 bones (15 wrists), segmented
by an expert in rheumatoid arthritis and acquired from 5 different patients, was analyzed to check
if the global bone volume and the intra-bones distance (related to joint space narrowing) can be
correlated to the disease evolution, in terms of erosion progression, assuming that erosion produce
a global volume reduction. For each bone, volume variations are computed with respect to the
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4: (b,c) Annotation of the bones of different patients and identification of morphological features (red regions)
(c-e) associated with a different level of variation (a) with respect to the corresponding baseline. Each level is
annotated together with its region. The color coding and the 3D model facilitate the inspection of the annotated areas
by the medical doctor. To avoid the over-smoothing of the surfaces, due to light conditions, the light is not used for
the rendering of these results. 14



(a) (b)

Figure 5: (a) Bones volume variations and (b) joint space narrowing for each follow-up exam for carpal bones. Vi
and Di are the volume and distance at the i-th temporal acquisition, respectively.

baseline acquisition (earliest exam); a negative value indicates a reduction in the bone volume.
Results are dispersed (Figure 5a) and the mean value for the volume variation is (+1.76±10.71%).
Checking for statistical significance of results, we found a p = 0.89, a value which reflects the
difficulties of operating on complex and low-resolution data already noted in the data variability
analysis.

Intra-bones distance variations were evaluated on the same data set, to check if this measure is able
to track the joint space narrowing evolution (connected to bone erosion, also in the early stages of
the disease), assuming that the intra joint distance decreases in time, as typical of the rheumatoid
arthritis. On the basis of an anatomical atlas, the adjacency matrix for the wrist sector (Figure 1)
was used to couple neighbor bones. Figure 5b shows the mean distance variation for each wrist
sector with reference to its corresponding baseline exam. Each point on the graph represents the
mean of the distance variations of a complete joint acquired at a time following the baseline, and
the corresponding confidence bound. The global mean value (±s) is �5.3± 8.1%. Also in this
case the check of statistical significance is critical, as we obtained a p = 0.64.

Morphological analysis of up-sampled MRI images. Image up-sampling allows us to achieve a
more accurate segmentation and quantitative analysis of morphological parameters of segmented
3D anatomical districts from low field MRI images, reduce the effect of volume variability, and
improve the consistency of the results for follow-up data. To this end (Figure 6), a MRI im-
age 128⇥128⇥51 has been up-sampled to a finer 256⇥256⇥102 resolution and the comparison
is conducted setting the same segmentation parameters for the low- and high-resolution images.
The segmentation algorithm works better on higher resolution images because it penetrates higher
frequency features more easily and can reach the segmented object boundaries more closely. Main
improvements (Figs. 3, 7) after up-sampling include a higher precision along contours (from left
image) and less smoothed bones (right image). Due to a higher precision in the identification of
the seed voxel used by the segmentation with geodesic active contours, we avoid segmentation
errors, such as the spurious connected components (first upper bone on the right), induced by a
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(a) 128⇥128⇥51

(b) 256⇥256⇥102

Figure 6: Single bone segmentation. Two views (a) of a slice are compared with the two corresponding views (b)
of the up-sampled image. The image up-sampling facilitates the selection of the seed points of small bones and tiny
cartilage for a more detailed and reliable segmentation based with the geodesics-active contour.

wrong selection of the pixel seed used for the segmentation of the low-resolution image.

The morphological characterization of segmented data is general enough to be applied to differ-
ent anatomical districts for the identification of artifacts in the acquired data, the analysis of the
effects of degenerative pathologies of soft and bony tissues, and the localization of shape varia-
tions due to posture. Initial tests have been performed on knee sectors from low field MRI images
(0.25 Tesla; x,y,z spacing: 0.70 mm, 0.70 mm, 0.90 mm), acquired at two different postures, with
a joint angle of 0� and 80�, and segmented by an expert. The evaluated variation of the intra-
bones distances on two scans of the knee district of four patients shows a homogeneous reduction
(�24.0±22%) for the 80� posture with respect to the 0� posture. The distances between adjacent
structures is mapped on the bones and the quantification of their variation is useful to character-
ize different diseases, such as cartilage destruction or other pathologies involving a geometrical
modification of the joint structures.
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128⇥128⇥51

256⇥256⇥102

Figure 7: Segmentation of an MRI 3D image: coronal view to the left side and 3D rendering to the right. The
upper image corresponds to a volume with resolution 128⇥128⇥51, whereas the lower image is its RBF up-sampled
version, with resolution 256⇥256⇥102.

4. Workflow for the morphological analysis and annotation of biomedical data

The previously described analysis for the identification and annotation of morphological variations
of bones and tissues that might have clinical interest on a single exam and for the analysis of patient
follow-ups can be performed according to specific processing pipelines. Generally speaking, the
detection of anomalies can be achieved considering the following main steps:

1. Acquisition of MRI images
2. Image segmentation
3. Creation of a 3D model of the district
4. Semantic annotation of the bones
5. Post-processing
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(a) Morphological analysis
(b) Feature annotation
(c) Parameter extraction
(d) Semantic annotation of the bones with the extracted parameters

In case of follow up evaluation the main steps to be performed are partially the same:

1. Acquisition of MRI images
2. Image segmentation
3. Creation of a 3D model of the district
4. Semantic annotation of the bones
5. 3D model comparison

(a) Shape registration
(b) Local distance evaluation
(c) Semantic annotation of the bones with the extracted parameters

A clear and formalized definition of such pipelines, which indicates the tools to be applied, can
offer a valid support to clinicians to better achieve useful results for the diagnosis. In this work,
researchers can also benefit of such a formalization by understanding at which steps they can im-
prove the process or reusing already developed tools. To this aim, we exploited the organization
and capabilities provided by the Virtual Visualization Service (DSW.v5, [3]) of the VISIONAIR
Infrastructure7. It is a well recognizsed infrastructure in the international computer graphics com-
munity; it consists of web available repositories of shape models and catalogue of resources for
their processing organized and documented using ad hoc ontologies. For the formalization, we
adopted the Workflow Ontology (WO), in which two subclasses have been created, WorkflowStatic
and WorkflowExecutable, for the instantiation of documental (that are static) for best practices, and
executable workflows, which directly allow the execution of sequences of software procedures on
shapes. Static workflows are meant as sequences of at least two activities that are elements of
the Activity class. Simple activities, i.e. corresponding to a single functionality, can be grouped
in macro-activities when they contribute to a unique logical action, which is normally performed
by using the same software system. They are elements of the SimpleActivity and MacroActivity
classes, respectively, both subclasses of the Activity class. Indeed, steps 1 to 5 should be encoded
as MacroActivity, while steps 5(a), 5(b), and 5(c) are SimpleActivity. In addition to provide useful
information, each activity can be described in more details by specifying additional information:
hints and constraints on the correct performing of the activity can be provided as instances of the
Tip and Restriction classes of the ontology. Tips and Restrictions can be referred to the general
criteria or to the use of specific tools for performing the specific activity. In our case, tools of
interest are those provided by the I-REUMA Partners. Indeed, in the DSW.v5 tool repository, we
inserted the information related to

• RheumaSCORE from Softeco/Esaote for the image segmentation and 3D model reconstruc-
tion;

7
http://visionair-v1.ge.imati.cnr.it/workflows/
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Figure 8: One of the created static workflows, showing the important processing steps for the bone annotation.

• Morph-Annotator from IMATI for the computation and annotation of the (i) inter-bone dis-
tance, (ii) erosion variation, (iii) rugosity (i.e., measure of small-scale variations of ampli-
tude in the bone surface); and

• SemAnatomy3D from IMATI for the semantic annotation of bones and anomalies.

Moreover, new instances of functionality have been added in the DSW.v5 tool ontology to include
those necessary for the MRI processing for rheumatoid arthritis detection and monitoring. Figure 8
depicts one of the workflow created, showing some of the metatada associated to the Part-based
semantic annotation. In addition to the formalixed workflows for the detection and annotation of
bones and their significant morphological characteristics, two recurrent pipelines for the geometric
model enhancement, which is required when 3D digital models are created from acquired data (e.g.
from laser scanner or from 3D imaging), have also been formalized and defined as executable
workflows. The first includes the following steps: 1) cleaning of data; 2) mesh smoothing and
reconstruction; 3) simplification; while the second considers: 1) sampling of data; 2) meshing;
3) simplification; 4) smoothing and fairing. For each single step, multiple choices are available
implementing different methods, which for further usage flexibility, we also made available as
single web services. The services included in the repository are described by a set of specific
metadata, which are used to properly combine the selected services in a workflow. Figure 9 shows
the web page for the access to the single processes.
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