
Consiglio Nazionale delle Ricerche
Istituto di Matematica Applicata 

e Tecnologie Informatiche 
“Enrico Magenes”

REPORT S

 
 

G. Alaimo, F. Auricchio, I. Bianchini, E. Lanzarone

Applying Functional Principal
Components to Structural

Topology Optimization

17-09



 

 
 
IMATI REPORT Series 
 

Nr. 17-09 

April 2017 
 
 

 

 

 

 

 

 

 

Managing Editor 

Paola  Pietra 

 

Editorial Office 

Istituto di Matematica Applicata e Tecnologie Informatiche “E. Magenes” 
Consiglio Nazionale delle Ricerche 
Via Ferrata, 5/a 
27100 PAVIA (Italy) 
Email: reports@imati.cnr.it 
http://www.imati.cnr.it 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Follow this and additional works at: http://www.imati.cnr.it/reports 

 
Copyright  © CNR-IMATI, 2017. 
IMATI-CNR publishes this report under the Creative Commons Attributions 4.0 license. 
 

http://www.imati.cnr.it/
mailto:reports@imati.cnr.it
http://www.imati.cnr.it/
http://www.imati.cnr.it/reports
http://www.imati.cnr.it/reports


 

 
 

IMATI Report Series Nr. 17-09 
April 7, 2017 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Applying Functional Principal Components to Structural Topology Optimization   
 

 
Gianluca Alaimo, Ferdinando Auricchio, Ilaria Bianchini, Ettore Lanzarone 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

_______________________________________________________________________________________________ 
Copyright © CNR-IMATI, April 2017 

 

 

http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Corresponding author: 
Ettore Lanzarone 
Istituto di Matematica Applicata e Tecnologie Informatiche “E. Magenes” – CNR 
Via  A. Corti,12 - 20133 Milano 
e-mail address: ettore.lanzarone@cnr.it 
 
Gianluca Alaimo 
Dipartimento di Ingegneria Civile e Architettura, Università di Pavia 
Via Ferrata, 3 - 27100 Pavia 
e-mail address: gianluca.alaimo01@ateneopv.it 
 
Ferdinando Auricchio 
Dipartimento di Ingegneria Civile e Architettura, Università di Pavia 
Via Ferrata, 3 - 27100 Pavia 
e-mail address:  auricchio@unipv.it  
 

Ilaria Bianchini 
Dipartimento di Matematica, Politecnico di Milano 
via Bonardi 9 - 20133 Milano 
e-mail address: ilaria.bianchini@polimi.it 
 
 

 

 

 

_______________________________________________________________________________________________ 

mailto:ettore.lanzarone@cnr.itt
mailto:gianluca.alaimo01@ateneopv.it
mailto:auricchio@unipv.it
mailto:ilaria.bianchini@polimi.it


 

 

 

 

 

 

 

 

 

Abstract 

 

Structural Topology Optimization optimizes the mechanical performance of a structure while satisfying 

some functional constraints. Nearly all approaches proposed in the literature are iterative, and the optimal 

solution is found by repeatedly solving a Finite Elements Analysis (FEA). It is thus clear that the bottleneck 

is the high computational effort, as these approaches require solving the FEA a large number of times. In 

this work, we address the need for reducing the computational time by proposing a reduced basis method 

that relies on the Functional Principal Component Analysis (FPCA). The methodology has been validated 

considering a Simulated Annealing approach for the compliance minimization in a variable thickness 

cantilever sheet. Results show the capability of FPCA to provide good results while reducing the 

computational times, i.e., the computational time for a FEA analysis is about one order of magnitude lower 

in the reduced FPCA space. 
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Abstract

Structural Topology Optimization optimizes the mechanical performance of a structure while

satisfying some functional constraints. Nearly all approaches proposed in the literature

are iterative, and the optimal solution is found by repeatedly solving a Finite Elements

Analysis (FEA). It is thus clear that the bottleneck is the high computational effort, as

these approaches require solving the FEA a large number of times. In this work, we address

the need for reducing the computational time by proposing a reduced basis method that

relies on the Functional Principal Component Analysis (FPCA). The methodology has been

validated considering a Simulated Annealing approach for the compliance minimization in

a variable thickness cantilever sheet. Results show the capability of FPCA to provide good

results while reducing the computational times, i.e., the computational time for a FEA

analysis is about one order of magnitude lower in the reduced FPCA space.
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1. Introduction

Structural optimization techniques aim to obtain optimized performance from a structure

while satisfying several functional constraints, e.g., the total mass to employ or stress limits.

The need for optimized solutions in structural applications has increased over the years

and has become nowadays fundamental, due to the limited availability of commodities, the

environmental impact, the market competition, and the new manufacturing processes, e.g.,

the 3D-printing.

Three main categories can be distinguished in the wide class of structural optimization

methodologies, i.e. size optimization, shape optimization and topology optimization. We

focus on the Structural Topology Optimization (STO) of continuum structures, whose aim

is to produce an optimized structural component by determining its best mass or volume

distribution in a given design domain. Differently from the other alternatives, which deal

with predefined configurations, STO design can attain any shape within the domain.

STO is essentially treated as a constrained minimization or maximization problem. Sev-

eral approaches and algorithms have been proposed for STO, as documented by the huge

literature available on the topic (Huang & Xie, 2010; Hassani & Hinton, 2012; Bendsøe &

Sigmund, 2013; Sigmund & Maute, 2013; Van Dijk et al., 2013; Rozvany & Lewiński, 2014;

Rozvany, 2014). The main distinction is between gradient-based and non-gradient-based

approaches; however, nearly all of the algorithms are iterative, and the optimal solution is

found by repeatedly performing a structural Finite Elements Analysis (FEA) which involves

the solution of the equilibrium equations of the problem under study.

On the one hand, such iterative approaches are powerful, as they allow to determine

optimized solutions in a variety of situations without additional assumptions. On the other

hand, the bottleneck of such approaches is the high computational effort, as they require to

perform the FEA a large number of times, as reported in Bendsøe & Sigmund (2013). As

an example, in a minimum compliance problem (see Sect. 2.1), up to the 97% of the total

computational time may be employed in the numerical solution of the equilibrium equations

(Borrvall & Petersson, 2001).

In this perspective, the need for reducing the computational time of performing the

FEA instances in STO, especially for large problems and 3D applications, is crucial. In

this work, we address this issue by proposing a reduced basis method that relies on the

Functional Principal Component Analysis (FPCA), namely the functional counterpart of

the classical Principal Component Analysis (PCA), in order to improve the efficiency of the

FEA employed in STO.

Coupling FPCA with structural FEA allows to reduce the dimensionality of the structural

problem, i.e., the number of equilibrium equations to be solved. In this way, a substantial

saving of the computational time required could be achieved at each iteration, without any

appreciable loss of accuracy. Thus, the advantages in terms of time reduction for STO could
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be relevant.

To the best of our knowledge, the idea of coupling FPCA and FEA has been exploited

only once in the literature (Bianchini et al., 2015). However, in the cited reference, the

authors coupled FPCA and FEA for the purpose of uncertainty quantification, in order to

estimate the probability distribution of some output random variables (e.g., the displacement

in a given direction) in the presence of stochastic input parameters (e.g., the Young modulus).

The novelty of the present work is to couple FPCA and FEA for an optimization purpose,

which has been never considered before.

Briefly, at each iteration of the STO, we convert the FEA problem into a reduced one

by projecting into a smaller space by means of a data-driven reduced FPCA basis. The

reduced problem is solved and, if the error associated with the solution is below a given

threshold, the reduced solution is accepted; otherwise, the original FEA problem is solved

and the complete solution is also used for updating the FPCA basis.

In the present work, we employ the proposed methodology along with a Simulated An-

nealing (SA) approach, as an example of iterative non-gradient based algorithm. However,

we underline that the proposed FPCA methodology can be used along with any iterative

algorithm employed in STO. More in general, the discussion on the most suitable algorithm

for STO is still open (Sigmund, 2011); anyway, this is not the focus of our work.

The paper is structured as follows. A literature review on STO and the approaches to

reduce the dimensionality and the computational effort in FEA is presented in Sect. 2. The

considered problem and the proposed methodology are described in Sect. 3. Then, the test

case used to validate the approach is shown in Sect. 4, while the computational analyses

and the related results are presented in Sect. 5. The discussions and the conclusion of the

work are finally drawn in Sect. 6.

2. Literature review

2.1. Structural Topology Optimization (STO)

As highlighted in Sect. 1, a huge literature on STO is available regarding theoretical

aspects, numerical methods and applications.

Collections of lectures dealing with several aspects of STO and optimality criteria are

edited by Rozvany & Lewiński (2014) and Rozvany (2014). Review papers focusing on

level-set methods, evolutionary approaches and established methods of structural topology

optimization are also available (Rozvany, 2009; Huang & Xie, 2010; Sigmund & Maute,

2013; Van Dijk et al., 2013). The fundamentals of the material distribution method and its

extension to anisotropic materials are presented in Bendsøe & Sigmund (2013), considering

dynamic and buckling problems as well as the design of truss structures. Hassani & Hinton

(2012) treated STO with periodic material distribution, for which macro constitutive models

are derived through suitable homogenization techniques.
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A widely used methodology in STO is represented by the density based approach, in

which the design domain Ω is discretized into a set of N elements and the density parameters

ρi associated to each element i (i = 1, . . . , N) are optimized. This method gained popularity

because it does not require domain re-meshing at each iteration (Zegard & Paulino, 2016).

Following this approach, the elastic modulus Ei of element i is related to its density

ρi according to the modified Solid Isotropic Material with Penalization (SIMP) scheme as

follows (Bendsøe, 1989; Zhou & Rozvany, 1991; Sigmund, 2007):

Ei (ρi) = Emin + ρpi (E0 − Emin) , ∀i (1)

where E0 is the elastic modulus of the solid material, Emin is the lower limit of the elas-

tic modulus (introduced to overcome computational issues in the presence of zero-stiffness

elements while solving the equilibrium equations), ρi ∈ [0, 1], and p ≥ 1 is a penalization

factor. Higher values of p make less convenient to use intermediate values of density between

solid (ρi = 1) and void (ρi = 0).

SIMP method with no penalization (p = 1) yields a linear relation between Ei and ρi,

giving the so-called variable thickness sheet problem for which the solution is unique in the

case of stiffness maximization (Petersson, 1999).

Discrete elements i for STO usually coincide with the mesh used for numerically solving

the FEA problem, even though they are theoretically independent. As a consequence, the

optimized solution depends on the level of the mesh refinement. Indeed, the introduction of

finer meshes (and consequently of smaller elements in a structure with fixed domain) leads

to a material distribution in the form of micro-structure, which increases the efficiency of the

optimized structure. In fact, microstructure-like material distributions lead to an improved

use of the material. However, even though a fine mesh is required to properly solve the FEA

problem, it is not always possible to build features below a certain scale from a technical

feasibility viewpoint.

To overcome this issue, relaxation or restriction methods can be used to uncouple the

discretization into elements from the mesh(Bendsøe & Kikuchi, 1988; Ambrosio & Buttazzo,

1993; Haber et al., 1996; Sigmund, 1997; Bourdin, 2001; Bruns & Tortorelli, 2001; Xu et al.,

2010). The rationale behind these methods is the reduction of the space of the admissible

designs by imposing weak constraints or restrictions on the density variation; thus, material

configurations resembling micro structures can be avoided.

2.2. Dimensionality reduction in FEA

Dimensionality reduction in FEA is based on spectral decomposition of the covari-

ance/correlation structure of the displacement field u(x, ρ), where x denotes the coor-

dinates of a point in the considered domain Ω and ρ represents a vector of parameters, e.g.,

densities, characterizing the FEA instance at each given iteration of the STO optimization.
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Spectral methods are widely adopted in the literature (Ghanem & Spanos, 1991). Among

them, PCA and Karhunen-Loève expansion are those frequently applied to FEA; the first

considers the covariance matrix, while the latter the spectrum of the correlation matrix. Both

of them require the knowledge of the covariance structure of u(x, ρ), and in particular of the

corresponding eigenfunctions. The covariance structure is estimated from a set of already

available solutions of the FEA problem, i.e., the basis depends on the covariance function

of the solution process and the approach is data dependent.

Alternatively, the Proper Generalized Decomposition (PGD) represents an a priori ap-

proach, which does not rely on previous FEA solutions (Nouy, 2010; Chinesta et al., 2011).

Indeed, the solution is approximated a priori by minimizing a norm of the error with re-

spect to the Karhunen-Loève decomposition, leading to a pseudo eigenproblem (details can

be found in Chinesta et al. (2013)).

Finally, there exist other well-established methods in the literature, based on alternative

expansions, which involve a basis of known random functions with deterministic coefficients,

namely the Polynomial Chaos Expansion (PCE). The latest methodological developments

of PCE can be found in Panayirci & Schuëller (2011) and Yu et al. (2012), while recent

applications can be found in different fields, e.g., hydrology (Sochala & Le Mâıtre, 2013),

piezoelectric materials (Umesh & Ganguli, 2013), and dosimetry to study the human expo-

sure to magnetic fields (Liorni et al., 2014).

Resuming PCA, it is widely used in statistics to look at the covariance structure of

multivariate and complex data (Johnson & Wichern, 1992; Ramsay & Silverman, 2005). In

the context of mechanical systems, the method turns out to be useful for characterizing the

dynamic behavior and to reduce the order of linear and non-linear systems (Kerschen et al.,

2005). Thus, PCA has been successfully applied in a variety of problems, e.g., aeroelastic

problems, damage detection, dynamic characterization, and modal analysis. It was initially

applied in solid mechanics (Sirovich, 1987); then, it has been employed in structural non-

linear dynamics (Dulong et al., 2007) and to analyze vibro-impact systems (Ritto et al.,

2012).

In particular, in Dulong et al. (2007), PCA has been employed for real-time analysis of

non-linear mechanical behaviors. Interestingly for our work, the approach is divided into

a training phase and a real-time phase. In the training phase, several FEA solutions are

computed under different load values; then, PCA is used in the real-time phase to reduce

the amount of data to store and the computational time.

Moreover, it is worth mentioning that, in the context of stochastic FEA, Florentin & Dı́ez

(2012) introduced an adaptive strategy to build a reduced basis in which, at each Monte

Carlo iteration, the distance between the FEA solution and the solution obtained in the

reduced space is checked. If the distance is larger than a threshold, the reduced solution

is discarded and the complete solution is computed and added to the current basis. Their

proposed approach measuring the distance between the solutions is interesting; however, the
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adopted reduced basis is not orthogonal, thus leading to an ill-conditioned matrix for the

basis change.

All of the works in which the decomposition exploits the covariance matrix are based on

the standard PCA, where data are treated as multivariate vectors, thus merely considering

the displacements of the nodes of the mesh. On the contrary, the FPCA (Ramsay & Silver-

man, 2005; Horváth & Kokoszka, 2012) has been only adopted in Bianchini et al. (2015), to

build the reduced basis in the context of stochastic FEA. The approach in Bianchini et al.

(2015) relies on the idea of evaluating the distance between the complete FEA solution and

the solution obtained in the reduced space to assess whether to keep or to discard a reduced

solution (as in Florentin & Dı́ez (2012)); however, a data-driven basis is built according to

the FPCA.

To conclude, PCA has been already adopted in the literature to address optimization

problems (an overview of several optimization problems related to PCA under various ge-

ometric perspectives can be found in Reris & Brooks (2015)). However, to the best of our

knowledge, the functional counterpart (FPCA) that we are here proposing has been never

coupled with FEA in the context of structural optimization, and only once in the context

of stochastic FEA (Bianchini et al., 2015).

3. Proposed methodology

We first describe in Sect 3.1 the addressed STO problem; then we present the approach

proposed to solve such a problem. The core of the approach (i.e., FPCA applied to FEA)

is detailed in Sect. 3.2, while the iterative SA algorithm for this case is presented in Sect.

3.3. Finally, precautions to take for properly employing the FPCA basis are highlighted in

Sect. 3.4.

3.1. Addressed problem

We refer to a linear elastic structural problem in a continuous domain Ω, whose goal is

to find the displacement field u (x) ∈ L2 (Ω) that minimizes the overall elastic energy (or

compliance) Ĉ, which depends on the displacement u (x) as follows:

Ĉ =
1

2

∫
Ω

f (x)u (x) dx (2)

where f (x) is the imposed force field.

We consider the variable thickness sheet problem (see Sect. 2.1). We discretize the

domain into elements i (i = 1, . . . , N) with the same area, and each elastic modulus Ei
linearly depends on the density ρi as Ei (ρi) = ρiEmat, where ρi ∈ [0, 1] and Emat is the elastic

modulus of the solid material when the thickness assumes its maximum value (ρi = 1). To

overcome computational issues in case of zero-stiffness elements, we redefine the range of
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each ρi as [ρmin, 1], with ρmin > 0, which is equivalent to what presented in (1). The goal of

our STO is to find the best vector ρ = [ρ1 . . . ρN ] that minimizes Ĉ (ρ), given one or more

constraints on the ρi values. In the following, as constraint, we impose a fixed value ρ∗ to

the mean ρi over the elements.

Thus, the nominal problem is:

minimize Ĉ (ρ)

s.t. 
Linear elastic problem in function of ρ∑N

i=1 ρi

N
= ρ∗

ρmin ≤ ρi ≤ 1, i = 1, . . . , N

Actually, we refer to the discretized counterpart of (2), namely:

C = ũ′ K ũ (3)

with Kũ = F , where ũ, F and K are the discretized displacement vector, force vector and

stiffness matrix, respectively. Symbol ′ denotes matrix transposition.

Moreover, as for the densities ρi, we add the well-known linear density filter (Sigmund,

2007), considering the following filtered densities ρ̄i:

ρ̄i =

∑
j∈Ni

h
(
yj
)
Ajρj∑

j∈Ni

h
(
yj
)
Aj

(4)

Aj and xj are the area and the center location of element j, respectively, while yj appearing

in the formula is a transformed vector for the coordinates such that yj = Γxj. Ni is the

neighborhood of element i, defined as:

Ni = {k : ‖yk − yi‖ < R}

and h
(
yj
)

= R −
∥∥yj − yi∥∥ is a linear weight function. Matrix Γ allows us to consider

different shapes for the neighborhood of the elements. In this way, the elastic modulus Ei
is redefined as:

Ei (ρ̄i) = ρ̄iEmat (5)

Thus, the addressed problem is stated as follows:

minimize C (ρ̄) (6)
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s.t. 

Discretized linear elastic problem in function of ρ̄

ρ̄i =

∑
j∈Ni

h (Γxj)Ajρj∑
j∈Ni

h (Γxj)Aj∑N
i=1 ρi

N
= ρ∗

ρmin ≤ ρi ≤ 1, i = 1, . . . , N

(7)

with ρ̄ = [ρ̄1 . . . ρ̄N ]′.

3.2. Building a reduced basis via FPCA

The methodological content of this section is based on the FPCA reduction approach

developed in Bianchini et al. (2015); the interested reader can refer to such a reference

for further details. However, as mentioned, the objective of Bianchini et al. (2015) was to

investigate the variability of a certain output quantity of interest given that some mechanical

parameters are random. Here, on the contrary, the optimization problem does not include

any randomness/variability, since we are looking for the (deterministic) configuration of

parameters that leads to the optimal output. This difference does not prevent us from

exploiting the FPCA reduction approach as in Bianchini et al. (2015), even though some

precautions are needed (as discussed in Sect. 3.4).

3.2.1. FPCA for FEA

Let U(Θ) = {u(x,ρ),ρ ∈ Θ} ∈ L2 (Ω) be the solutions space of the structural prob-

lem, with Θ = [ρmin, 1]N . The goal of the FPCA is to describe U(Θ) through an optimal

orthonormal basis.

For this purpose, we need M realizations of the solution, obtained with as many values

ρm (m = 1, . . . ,M) of the parameter vector ρ; of course, the bigger M is, the more accurate

the procedure will be.

By assuming that M is large enough, the subspace spanned by the solutions

{u(x,ρm),m = 1, . . . ,M}

approximates U(Θ). Thus, by applying FPCA to these solutions, we may estimate the K

orthonormal basis functions that optimally approximate U(Θ), where K is a fixed integer

value with 1 6 K 6M .

Indeed, FPCA is a method to build an approximation of the set of solutions. Let us de-

note by vm(x) the solution u(x,ρm) and by v̂m(x) the corresponding approximate solution.
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The approximation takes the following form:

v̂m(x) =
K∑
k=1

fmk ξk(x)

where ξk(x), k = 1, . . . , K are the orthonormal principal functions and fmk the principal

component scores corresponding to the m-th solution, which are defined as:

fmk =

∫
Ω

vm(s) ξk(s) ds k = 1, . . . , K

The data-driven basis we are considering collects the principal functions. This basis is

optimal, as the K functions {ξk(x), k = 1, . . . , K} achieve the minimum of the following

error measure χ, given the M observed functions {vm(x),m = 1, . . . ,M}:

χ =
M∑
m=1

‖vm − v̂m‖2
L2 =

M∑
m=1

∫
Ω

(vm(s)− v̂m(s))2 ds

In other words, the basis minimizes the sum of the L2 reconstruction errors over the M data.

From an operative viewpoint, the elements of the basis solve a particular eigenvalue prob-

lem which involves the covariance operator. Let us considerM functions {vm(x),m = 1, . . . ,M}
with a null cross-sectional mean, i.e.,

1

M

M∑
m=1

vm(x) = 0

Then, the associated (empirical) covariance function is defined as:

V(s, t) =
1

M

M∑
m=1

vm(s)vm(t)

and the corresponding covariance operator as:

Vξ : ξ(·) 7→
∫

Ω

V(·, t)ξ(t)dt

Hence, each principal component turns out to solve the following eigenproblem:

Vξ(x) = γξ(x) (8)

and the FPCA can be equivalently expressed as the eigenanalysis of the covariance operator

V. This characterization helps us in building the basis, as explained in the next section.
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3.2.2. Creation of the reduced basis

We start from M solutions u1 (x) , . . . ,uM (x) obtained solving complete FEA problems

for different values of ρ, and we define the matrix

U = [ũ (ρ1)− ū, . . . , ũ (ρM)− ū]′

where ũ (ρm) is the vector containing the displacements in all of nodes of the FEA mesh

(ordered as the displacements of the first node, then of the second node, and so on) and ū

is the sample mean

ū =
1

M

M∑
m=1

ũ (ρm)

Thus, the dimension of U is M × 2L, where L is the number of elements of the mesh.

We have to find out the orthonormal basis based on the functional principal components

of matrix U. We suggest to use the method of snapshots (Sirovich, 1987; Volkwein, 2011)

to determine the basis: if 2L > M , which is certainly our case, the basis of rank K is

determined as follows:

• define Y = (UW1/2)′ with

W = [wb1b2 ]

[∫
φb1(x)φb2(x)dx

]
where φk(·) are the finite element functions;

• solve the eigenvalue problem

Y
′
Yvk = λkvk k = 1, . . . , K

where λk are in descending order;

• set

ξk =
1√
λk
U
′vk k = 1, . . . , K.

The projection into the reduced space of dimension K can be done using the following

matrix:

Urb = [ξ1, . . . , ξK ] .

Finally, we have to choose the value of K. We adopt a method based on the maximum

eigenvalue λmax, i.e., we retain all of the eigenfunctions corresponding to an eigenvalue λk
such that λk > Λλmax, where Λ typically assumes small values, e.g., 10−4 (Dulong et al.,

2007).
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3.2.3. Reduced FEA problem

We employ the reduced basis because, at each iteration g of the optimization method

(e.g., the SA adopted in this work), we solve a reduced problem, which is much less compu-

tationally demanding as the solution is obtained in the subspace spanned by the principal

components.

The complete FEA problem corresponding to the linear elastic problem requires to solve

Kgũg = F (9)

where Kg is the stiffness matrix for realization ρg.

On the contrary, the reduced problem is obtained by projecting the problem into the

subspace spanned by the K principal components:

U
′
rbKgũred,g = U′rbF , (10)

with ũred,g = ūg + UrbU
′
rbug = ū + Urbag and ag = U′rbug ∈ Rk. Thus projection (10)

becomes:

U
′
rbKgUrbag +U′rbKgūg = U′rbF

Summing up, for each iteration/realization g, the reduced problem turns out to be the

following: 
Krbag = F rb

ũred,g = Urbag

ũg = ūg + ũred,g

(11)

with:

• Krb = U′rbKgUrb;

• F rb = U′rbF −U′rbKgūg = U′rb (F −Kgūg).

Obviously, the solution ũg of (11) is computationally cheaper than the solution obtained

when solving a complete FEA problem, but it is only an approximation. To monitor the

approximation error, we compute at each iteration g the residual ẽred,g = Kgũred,g −F and

consider its quadratic norm

errg = ‖ered,g‖2
L2 = ẽ′red,gWẽred,g

as an estimate for the error.

We check whether errg < tol, where tol is a tolerance value defined by the user. If the

condition is satisfied, we keep the reduced solution for iteration g and go ahead with the next

iteration g + 1. Conversely, if the condition is not satisfied, we discard the reduced solution

and solve the full problem. The complete solution of the full problem is kept for iteration
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g, and it is also used as a further realization to update the basis. The newly updated basis

replaces the previous one for all of the following iterations of the algorithm, until a new

update is required.

Anyway, the construction of the reduced FPCA basis requires several FEA solutions;

thus, at the first M∗ iterations, the complete FEA problem is directly solved.

3.3. Simulated annealing algorithm

We employ the classical framework of the SA iterative algorithm, in which the optimal

solution S∗ is refined iteration by iteration (Henderson et al., 2003). Below, we briefly recall

the framework and we detail the main points of our implementation.

In general, at each iteration g of the algorithm, a new solution Sg is computed based

on a given value ρg. If the newly provided solution Sg has a better value of the objective

function than the current optimal solution S∗, new solution Sg replaces the current S∗, and

the value ρg+1 for the next iteration is computed based on the current one ρg. Otherwise,

the provided solution Sg can be accepted with a probability πg. If accepted, once again Sg
replaces the current S∗, and the value ρg+1 is computed based on ρg. If not accepted, the

solution Sg is not considered and the value ρg+1 is computed based on that of the current

optimal solution ρ∗. The solution S∗ at the end of the iterations is the optimal solution

provided by the SA.

In our work, each solution Sg refers to problem (7), once a value ρg is fixed. To complete

the description of the algorithm, we must provide the approach to compute the next value

ρg+1 while respecting the mean ρ∗, the rule to compute probability πg, the initialization of

the algorithm, and the termination criteria.

As for the next value ρg+1, it is built by first adding a discrete Gaussian random field

with null mean to the current density field. Then, values outside of the range [ρmin, 1]

are replaced with the closest value in the range, and the resulting field is normalized to

respect that the mean value is ρ∗. The Gaussian field is generated at each iteration, while

its covariance matrix is updated every ggauss iterations, to start from highly variable fields

to highly correlated ones.

Indeed, each element of the covariance matrix is given by σed(yi,yj)φg , where d
(
yi,yj

)
is

the Euclidean distance between the transformed coordinates yi and yj of elements i and j,

respectively, and φg is as follows:

φg = φfinal − (φfinal − φinit) e−gstart/Tgauss

where gstart represents the first value of g within the group of ggauss iterations, and φfinal <

φinit.

Concerning πg, it is based on a cooling schedule, i.e., a strictly monotonic decreasing

temperature function T (g). In our case, we consider the following form:

T (g) = Tmaxe
−g/Tsa
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Then, πg is given by:

πg = e−
Cg−C∗

T (g)

where Cg and C∗ refer to the objective function (compliance) values for Sg and S∗, respec-

tively. To evaluate whether to accept a worst solution Sg with Cg > C∗, a random number

ηg uniformly distributed between 0 and 1 is generated; if ηg < πg, then the solution is ac-

cepted. According to the SA framework, accepting a worst solution becomes less likely while

g increases, as T (g) monotonically decreases with g.

Finally, the algorithm is initialized considering a vector ρ1 in which all elements are equal

to ρ∗, while it is terminated after a maximum number G of iterations or when the solution

freezes. The latter, according to the SA framework, occurs when the current optimal solution

S∗ is not updated in the last gf iterations and T (g) is below a given value Tf .

The adopted values of all parameters are reported in the computational analyses (Sect.

5.1).

3.4. Making the basis adaptive

The two ingredients introduced in Sect. 3.2 and 3.3 are combined to build an algorithm

that efficiently solves the STO. Thus, the goal of the reduced basis is to solve an optimization

problem whose characteristics vary along with the iterations g of the optimization.

In particular, the value of ρg changes at each iteration, and after several iterations the

analyzed FEA problem can be strongly different from the previous ones. As a consequence,

we need a basis that follows the changes happening along with the iterations.

For this reason, when an update of the basis is required (because errg ≥ tol), the new

basis is built considering only the last solutions obtained solving a complete FEA problem.

In particular, we consider the last M∗ solutions, where M∗ coincides with the number of the

initial complete solutions (end of Sect. 3.2.3).

In this way, we get rid of the old solutions that are likely to be very different from the

current one, and thus not useful to describe the space U(Θ) in the neighborhood of the

current point. In the absence of such riding, the dimension of the reduced problem could

be uselessly higher, because of including additional variability related to conditions very far

from those currently under investigation. Moreover, including the useless variability, the

error related to the reduced problem could increase.

4. Test case

We validate the proposed approach dealing with one of the classical problems encountered

in STO, i.e., the compliance minimization for a variable thickness cantilever sheet.

The cantilever consists of a rectangular domain Ω (dimension b × h) with Dirichlet

boundary conditions on one of the sides. Moreover, as load, we either consider a constant

body force f d or a concentrated force f c applied in the middle of the side opposite to the
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one with Dirichlet boundary conditions. The domain, together with the Dirichlet conditions

and the two alternative loads, is sketched below.

f d
f ch

b

The setting for the tested cases is: Ω = (0, 200) × (0, 40); either f d = (0,−0.1) or

f c = (0,−10); Poisson’s ratio ν = 0.3; Emat = 2000; ρmin = 0.05.

We adopt a standard FEA discretization to solve the problem, based on triangular bi-

linear approximations into a standard principle of virtual work approximation (Zhu et al.,

2005; Hughes, 2012), where n is the number of intervals between nodes per each side of the

domain.

As for ρi, we discretize the domain into N rectangular elements, each one involving two

triangular regions of the mesh; thus, L = 2N and n =
√
N .

Finally, as for the density filter, we adopt R = 2 the following diagonal matrix Γ:

Γ =

[
n
b

0

0 n
h

]
so as to have an elliptic neighbor region for (4), whose semiaxes are proportional to the size

of the elements in that direction.

5. Computational analyses

We first consider one mechanical condition to evaluate the impact of the FPCA param-

eters (Sect. 5.1). Then, fixing these parameters to a suitable value, we investigate several

mechanical conditions to analyze the STO outcomes (Sect. 5.2). Finally, in the same section,

we compare our outcomes with a literature benchmark.

All tests have been run on a Server with processor X86-64 AMD Opteron 6328 and 64GB

of dedicated RAM.

5.1. Impact of FPCA parameters

These analyses are conducted under concentrated force with ρ∗ = 0.5. The analyses refer

to the impact of n, tol, Λ and M . In particular, 3 levels for n (50, 70 and 90), 3 levels for

tol (5%, 7.5% and 10%), 2 levels for Λ (10−7 and 10−4) and 2 levels for M∗ (30 and 50) are

considered.

The other SA parameters are fixed as follows: G = 2000; Tmax = 0.0004; Tsa = 1000;

Tf = 10; gf = 2000 (the latter two values are set to prevent early freezing). Finally,
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the additional parameters for the Gaussian field are as follows: ggauss = 50; σ = 0.0005;

φinit = 250/n; φfinal = 0.025/n; Tgauss = 500.

All tests are reported in Table 1 together with the main outcomes, i.e., the objective

function C, the mean computational time to run a complete FEA, the number of rejections

of the reduced FEA solution (because errg ≥ tol), the mean computational time to run a

reduced FEA, the mean time to create a new basis, and the maximum number K of vectors

in the basis along with the iterations.

Results clearly show that the computational time required by the reduced FEA is one

order of magnitude lower than the time required by the complete FEA, and that the differ-

ence grows with n. Moreover, the time to compute the basis is about one-fourth of the time

required by the complete FEA.

Details are reported in Figure 1. Plots show that the time required by the complete FEA

strongly increases with n, while on the contrary the increasing of the time required by the

reduced FEA is negligible; thus, this dramatically increases the difference between the times

while n increases. Also the time for creating the basis increases, but again the difference

between the time for the complete FEA and the time for computing the basis increases with

n. Results are retained while varying the other parameters, e.g., parameter tol as in the

three plots of Figure 1.

Moreover, it is worth noting that the other outcomes are about the same while varying

n; in particular, the reached objective function and the number of rejections do not seem to

be affected by n.

As expected, the number of rejections varies along with tol, while it only marginally

depends on other parameters (see Figure 2a as example) showing only a small reduction

from M∗ = 30 to M∗ = 50. Also the objective function C varies with tol, as expected, as

higher tol values increase the error associated with the FEA solutions, thus resulting in an

error associated with the objective function C.

Anyway, the variation of the objective function C is limited and below an approximation

universally accepted for FEA methods. In particular, by comparing the solutions in Table

1 with the corresponding ones without reduced basis (i.e., when tol = 0% and the reduced

solution is never exploited), errors are below the 3% in the majority of cases.

A trade-off is required; in our case we consider tol = 7.5% as the optimal choice because

it gives limited variations of objective functions C with respect to tol = 0%, and because the

largest reduction in the number of rejections is observed between tol = 5% and tol = 7.5%.

As for the impact of Λ, we observe that with Λ = 10−7 the maximum number K of

vectors in the basis along with the iterations is always equal to M − 1, meaning that all

eigenvectors are always included. On the contrary, with Λ = 10−4, a lower number of vectors
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Input Outcomes

parameters Objective Mean time Number Mean time Mean time Max

function complete of reduced create K

n tol Λ M∗ C FEA [s] rejections FEA [s] basis [s] iter.

50 0.0% – – – – 14.400 0.08512 – – – – – – – – –

50 5.0% 10−7 30 14.444 0.08321 776 0.00531 0.02354 29

50 7.5% 10−7 30 14.747 0.09130 275 0.00491 0.02263 29

50 10.0% 10−7 30 14.862 0.08900 147 0.00415 0.02167 29

50 5.0% 10−4 30 14.431 0.11150 1054 0.00199 0.01781 21

50 7.5% 10−4 30 14.651 0.11062 338 0.00148 0.01599 17

50 10.0% 10−4 30 14.891 0.11201 157 0.00117 0.01602 14

50 5.0% 10−7 50 14.457 0.09603 778 0.00751 0.05052 49

50 7.5% 10−7 50 14.697 0.10351 299 0.00716 0.04851 49

50 10.0% 10−7 50 14.582 0.10722 174 0.00645 0.04515 49

50 5.0% 10−4 50 14.408 0.10171 1114 0.00219 0.03012 23

50 7.5% 10−4 50 14.578 0.11304 472 0.00208 0.02881 22

50 10.0% 10−4 50 14.887 0.10381 222 0.00115 0.02745 8

70 0.0% – – – – 14.472 0.21073 – – – – – – – – –

70 5.0% 10−7 30 14.640 0.20505 791 0.01255 0.05190 29

70 7.5% 10−7 30 14.849 0.23546 265 0.01312 0.05478 29

70 10.0% 10−7 30 15.007 0.22744 163 0.01239 0.05317 29

70 5.0% 10−4 30 14.551 0.20557 1084 0.00412 0.03451 23

70 7.5% 10−4 30 14.832 0.20600 299 0.00271 0.02948 12

70 10.0% 10−4 30 18.168 0.20656 80 0.00234 0.02889 5

70 5.0% 10−7 50 14.535 0.21838 876 0.01693 0.10878 49

70 7.5% 10−7 50 14.634 0.24926 310 0.01854 0.12620 49

70 10.0% 10−7 50 14.847 0.24915 172 0.01435 0.09257 49

70 5.0% 10−4 50 14.557 0.20208 1143 0.00403 0.05726 25

70 7.5% 10−4 50 15.025 0.19835 387 0.00258 0.05104 11

70 10.0% 10−4 50 15.166 0.20014 258 0.00215 0.04994 6

90 0.0% – – – – 14.495 0.35333 – – – – – – – – –

90 5.0% 10−4 30 14.682 0.36901 973 0.00735 0.06166 21

90 7.5% 10−4 30 16.050 0.36560 212 0.00434 0.05751 5

90 10.0% 10−4 30 15.707 0.36508 117 0.00414 0.05663 5

Table 1: Tested cases for concentrated force with ρ∗ = 0.5.
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Figure 1: Mean time to run a complete FEA, to run a reduced FEA, and to create the basis as a function

of n for tol = 5% (a), tol = 7.5% (b) and tol = 10% (c); other parameters are Λ = 10−4 and M∗ = 30.
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Figure 2: Number of rejected reduced FEA solutions (a) and objective function C (b) as a function of tol,

for Λ = 10−7 or Λ = 10−4, and M∗ = 30 or M∗ = 50; n = 50 in all cases.

18



Figure 3: Objective function along with the iterations for concentrated force, ρ∗ = 0.5, tol = 7.5%, Λ = 10−4

and M∗ = 50.

is included. This happens with both M∗ = 30 and M∗ = 50. As all other outcomes do not

change with Λ, we consider the simplest case in the following analyses, i.e., Λ = 10−4 and

M∗ = 50.

5.1.1. Convergence of the simulated annealing

Even though the SA employed in the STO is not the core of our work, we verify the

convergence of the algorithm in order to rely on the obtained results.

Figure 3 shows the objective function along with the 2000 iterations for the same case

of concentrated force with ρ∗ = 0.5, in which the above selected parameters are taken (i.e.,

tol = 7.5%, Λ = 10−4 and M∗ = 50).

The trend shows the convergence of the algorithm, with a plateau in the objective func-

tions after a certain number of iterations. Thus, with the selected parameters for the SA,

the algorithm is able to converge. We remark that there we did not observe freezing before

the end of the programmed iterations because of the set parameters.

Similar trends with a plateau sufficiently before g = 2000 are obtained in all other cases

of Table 1.

5.2. Mechanical outcomes

In this section we consider several mechanical conditions to further analyze the behavior

of the approach and provide solutions that can be compared with literature benchmarks.

Analyses are conducted at three different levels of ρ∗ (i.e., ρ∗ = 0.25, ρ∗ = 0.5 and ρ∗ = 0.75),

and both under concentrated and distributed force, whose values are reported in Sect. 4.
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(a)

(b)

(c)

Figure 4: Map of optimal ρ as function of ρ∗ in the case of concentrated force: ρ∗ = 0.25 (a); ρ∗ = 0.5 (b);

ρ∗ = 0.75 (c).

As for the other parameters, we consider a discretization with n = 50, which is enough

for the considered problem, and we set Λ = 10−4 and M∗ = 30, which represent the optimal

trade-off from the results presented above. Finally, all other parameters assume the same

value as in Sect. 5.1.

Detailed outcomes for all tested cases are reported in Table 2, while the density maps at

the optimum are provided in Figures 4 and 5. Moreover, the objective function as a function

of ρ∗ is reported in Fig. 6 for both the concentrated and the distributed force.

The obtained maps are coherent and reflect what we expected, based on both the struc-

ture of the addressed problem itself and the available literature.
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(a)

(b)

(c)

Figure 5: Map of optimal ρ as function of ρ∗ in the case of distributed force: ρ∗ = 0.25 (a); ρ∗ = 0.5 (b);

ρ∗ = 0.75 (c).
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Figure 6: Objective function as a function of ρ∗ under both concentrated and distributed force.

A more detailed comparison is reported below at the end of the section. However, before

the comparison with the literature, let us analyze once again the obtained solutions with

respect to those obtained without reduced basis (i.e., imposing tol = 0%). First of all, the

high reduction of the computational time between reduced and complete FEA is confirmed.

Moreover, as shown in Table 2, very close values of objective function C are found when

exploiting or not exploiting the reduced basis. This is also confirmed while comparing the

maps in Figures 4 and 5 with the corresponding ones obtained without reduced basis (not

reported in the paper). The similar maps, together with the close value of the objective

function, further confirms the goodness of the optimal solution.

Finally, we remark that plots similar to Figure 3 are obtained in all cases, assessing the

converge of the SA algorithm.

It may appear strange that these good solutions are found with high values of tol. Any-

way, the discrepancy between a high value of tol and a satisfying approximation of the

solutions is due to the fact that tol takes into account the reconstruction error of the ex-

ternal force f , while our interest is on the solution u, which gives the objective function.

Therefore, it may happen that the solution u does not vary too much while changing f ,

thus leading to a possibly large reconstruction error on f but at the same time to a good

approximation of the objective function.

As benchmark for comparing our outcomes, we consider the solutions presented in

Bendsøe & Sigmund (2013). Our solutions are coherent with those of the benchmark, being

coincident from a qualitative point of view. In particular, both in our outcomes and in

Bendsøe & Sigmund (2013), optimized solutions are obtained by increasing the density near

the fixed and the external sides of the cantilever. We also observe considerable areas with

intermediate density, especially for higher values of ρ∗.

23



6. Discussions and conclusion

In this work, we apply FPCA to STO in order to reduce the computational times asso-

ciated with the many solutions of the FEA problem, due to the iterative algorithms applied

to find the optimal solution.

The outcomes from the application to one of the classical problems encountered in STO,

i.e., the compliance minimization for a variable thickness cantilever sheet, are highly promis-

ing. Indeed, with a reasonable set of parameters, we have been able to provide good solutions

and to reduce of at least one order of magnitude the time to solve the FEA problem in a

high number of iterations.

Moreover, let us remind that optimized solutions like those shown in Figures 4 and 5 can

be easily produced with the new emerging manufacturing processes, e.g., the 3D printing.

Thus, STO is a necessary step of the design process to fully exploit the potentialities of

such new technologies, in order to build lightweight optimized components. In this light,

proposing new approaches and methodologies to reduce the computational times of STO,

as the one developed in this paper, is fundamental to support the new design processes and

to exploit the new technologies.

Our future work will extend the approach to the size and the shape optimization, in

which the solution must follow predefined configurations. As for example, we will introduce

reinforced edges or reinforced linear structures in the domain Ω, and we will optimize the

solution with respect to the layout of these structures. Moreover, we will also apply our

reduced basis approach to STO in the presence of gradient-based algorithms; indeed, we

will investigate how to numerically evaluate the gradient of the objective function in the

reduced space, allowing for a supplemental time reduction.
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