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Abstract 

 

    Pattern characterization of geometric features is of great interest in the cultural heritage domain, as the style 

of the some parts such beards, hairs, helms or cuirass decorations would support and enhance the classification 

and/or cataloguing of the archaeological artefacts and fragments. In this context, a pattern is a geometric or 

colour feature which is repeated over a surface, either on its entirety or on a part (for instance, engravings and 

chisellings, ornamental decorations, etc.).  

    In the literature, methods that face this problem either project the surface into an image and then adopt a 

image pattern recognition techniques or try to extend in 3D an existing image technique to surfaces. In this 

paper, we analyse the performance of the technique called mesh Local Binary Pattern (meshLBP) that works on 

triangulation meshes, considering implementation defined in [WTBdB15, WBdB15] and freely available1. Tests are 

performed on meshes of the repository at STARC - The Cyprus Institute [STA] that correspond to laser scans of 

earthenware fragments retrieved from the Salamina Island. Fragments are represented with triangulations, not 

necessarily uniformly sampled. In this paper we analyse two kind of patterns represented by geometric and 

colorimetric variations on the surface of the fragment. In addition, we discuss a sub-sample strategy to keep the 

effectiveness of the meshLBP descriptor and the dependence of the operator on parameters such as the surface 

representation and the number of rings used for its multi-scale evaluation. Finally, the main limitations of the 

method are discussed and possible improvements and future developments are outlined. 
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1 https://it.mathworks.com/matlabcentral/fileexchange/48875-mesh-lbp 
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Analysis of a multi-ring technique for 3D pattern

recognition

Moscoso Thompson Elia, Biasotti Silvia

Abstract

Pattern characterization of geometric features is of great interest
in the cultural heritage domain, as the style of the some parts such
beards, hairs, helms or cuirass decorations would support and enhance
the classification and/or cataloguing of the archaeological artefacts and
fragments. In this context, a pattern is a geometric or colour feature
which is repeated over a surface, either on its entirety or on a part (for
instance, engravings and chisellings, ornamental decorations, etc.).

In the literature, methods that face this problem either project
the surface into an image and then adopt a image pattern recognition
techniques or try to extend in 3D an existing image technique to sur-
faces. In this paper, we analyse the performance of the technique called
mesh Local Binary Pattern (meshLBP) that works on triangulation
meshes, considering implementation defined in [WTBdB15, WBdB15]
and freely available1. Tests are performed on meshes of the repository
at STARC - The Cyprus Institute [STA] that correspond to laser scans
of earthenware fragments retrieved from the Salamina Island. Frag-
ments are represented with triangulations, not necessarily uniformly
sampled. In this paper we analyse two kind of patterns represented by
geometric and colorimetric variations on the surface of the fragment.
In addition, we discuss a sub-sample strategy to keep the effectiveness
of the meshLBP descriptor and the dependence of the operator on pa-
rameters such as the surface representation and the number of rings
used for its multi-scale evaluation. Finally, the main limitations of the
method are discussed and possible improvements and future develop-
ments are outlined.

1https://it.mathworks.com/matlabcentral/fileexchange/48875-mesh-lbp
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1 Introduction

Technological advancements caused a remarkable increase of the volume of
3D models available in digital form and shape scans and models often inte-
grate colorimetric and geometric information into a single support defined
over a surface. Moreover, for 3D scans, triangular mesh representations are
a standard de-facto. Besides their representation, describing and recogniz-
ing the main features of these 3D models is becoming an acute issue for
numerous applications, including CAD, medical imaging, molecular biology,
architecture, and cultural heritage.

Despite the abundance and the richness of the mesh representation, the
analysis of 3D patterns is still an open issue, either in terms of description
and location of the features. 3D pattern recognition, in the sense of the
characterization of repeated, geometric and/or colorimetric patterns over the
skin of a 3D model, is an interesting topic of research [KCPS15, GBLM16].
Indeed, knowing where and what pattern is located on the surface of an
object would give insights to the interpretation of the model and would lead
to a more accurate classification.

In this work, we analyse the effectiveness of the meshLBP [WTBdB15,
WBdB15] for 3D characterization and pattern classification. The interesting
aspect of the meshLBP technique is that it extends to triangular meshes
the LBP description [OPH96, OPM02] originally developed for 2D image
analysis and that has been shown to be able to successfully deal with 2D
pattern recognition.

With respect to the previous work, we firstly test the meshLBP in an op-
erative context, i.e. fragments of 3D scans, possibly with an irregular vertex
distribution and holes, eventually equipped with colorimetric information,
see Figure 1. We also discuss how to face current limitations, regular vertex
valence, uniform vertex distribution, dependence of the pattern recognition
to the sample density, proposing a number of solutions.

The rest of this paper is organized as follows. Section 2 briefly introduces
the current state of the art of 3D pattern description and analysis, then in
Section 3 we describe the meshLBP technique. The experimental set-up
and tests are presented in Section 4 while Section 5 concludes the paper
discussing how to face the current limitations of the method.

2 State of the art

To the best of our knowledge the direct study of 3D patterns on triangulated
meshes is quite limited. While there is a large amount of work for 2D images
and 2D patterns, see for instance [GBLM16] and a number of methods
for the generation of 3D patterns for visualization and animation purposes
[KCPS15], the problem of properly describing and identifying patterns is
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Figure 1: Examples of fragments used to tile the 3D patterns used in the
experiments, original models come from the STARC repository [STA].

still open.
We distinguish between methods that are global, i.e., aim at recognizing

large features, such as windows, doors and repeated patterns of architectural
buildings, and local, i.e. describe the neighbour of a vertex or a face and
look for repeated features such as grains, texture, etc.

As a representative of the first group, the Hough transform [Hou62],
[DH72] is a well-known technique used to identify lines and circles in images.
In 3D, the Hough transform has been used in [OLA14] to identify recurring
line elements of buildings; however, the use of 3D Hough transform is limited
by the fact that the feature curves to be identified must be locally planar
and the Hough transform require a-priori knowledge on the family of curves
to be identified (in general an algebraic curve).

Most of methods that are suitable to locally describe a 3D pattern de-
rive from 2D descriptions. For instance, the SIFT (Scale Invariant Feature
Transform) descriptor, originally defined for images [Low04], is a position-
dependent histogram of the local variation of the gradient in the geometrical
directions around a key-point. Scale invariance is obtained through normal-
ization of the size of the local neighbourhood while rotational invariance
is achieved through the identification of the dominant orientation of the
neighbourhood. An extension of the SIFT description to 3D domain able to
code and replicate color patterns on a triangular mesh has been proposed in
[LT13]. In this case, the description is mainly used in creation rather than
in recognition.

Similarly to SIFT, the Fast Point Feature Histogram (FPFH) by [RBB09]
seems to be suitable for the local characterization of repeated patterns. In-
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a) (b)

Figure 2: (a): An example of ORF. The central facet is in red, while the
facets of the ring are in blue. Is worth notice that there are 12 facets
composing the ORF. (b): ORF 2 for the facet f (red). This ring (blue) is
compose by 24 facets. In general, if all vertices have 6-valence then ORFn

is composed by 12n facets.

deed, the FPFH description pairs each oriented point (p, n) on the mesh or
point cloud with each of its oriented neighbours (pi, ni) and builds a vector
with three values: (i) the cosine of tangent and the direction vector of the
neighbour; (ii) the projection of the neighbour normal in the plane spanned
normal and (iii) the tangent normal at p. To make the FPFH description
independent of the point cloud density, it is possible to adaptively estimate
the size of the neighbourhood of each point [SPS15] and to filter components
surrounded by extremely irregular surfaces.

Recently, the Local Binary Pattern (mesh-LPB) [WTBdB15, WBdB15]
has been proposed to characterize and recognize 3D patterns, facial ex-
pressions and 3D textures [WTBD15b, WTBD15a] and has been shown to
outperform over many 3D descriptors, such as spin images [JH99]. For this
reason, we have selected this method as the current best state of the art on
3D pattern recognition.

3 The meshLBP descriptor

In this Section we describe how to extract the meshLBP from a triangulation
and how to use such a description for 3D pattern characterization. Finally,
we discuss the computational complexity of the method.

3.1 Definition

Let T = (F, V ) a triangulation representing a 3D model, with nf facets and
nv vertexes and let be h : F → R a facet descriptor, i.e., a scalar function
defined over the set of facets.

The key components of the meshLBP are rings of facets, build around
a facet f ∈ F . In case the triangulation has vertex 6-valence, its neighbour

4



(first ring) is composed by the 12 facets that share at least a vertex and/or
an edge with f (figure 2(a)). The practical construction of these rings is
described at [WBdB15]. For each ring, facets are ordered (in clockwise or
anti-clockwise manner); with this ordering, the ring is called an Ordered
Ring Facets, or ORF.

Then, the meshLBP function over the facet f is defined as follows:

meshLBP (f) =

11∑
k=0

s(h(f)− h(fk)) · α(k) fk ∈ ORF (f);

s(x) =

{
1 if x ≥ 0
0 if x < 0

The function α is a weight-function that defines the size of the meshLBP,
and therefore the range of the values that the meshLBP can assume over
the facet f . Two functions are proposed for α: α1(k) := 1 (that, for meshes
with 6-valence means the meshLBP (f) can assume 13 different values) and
α2(k) := 2k (that admits 212 = 4096 different values).

The choice of the number of rings r on which compute the meshLBP is
flexible and it is called radial resolution. As shown in figure 2(b), the second
ring of the facet f is the wave-front external expansion of the first ring, i.e.,
ORF 2 is made of all the facets that share a vertex and/or an edge with the
ORF and that are not ’inside’ the ORF itself. The same concept iterates
over concentric rings (ORF r is used to call the r-th ring) and the meshLBP
extends as follows:

meshLBPm
r (f) =

m−1∑
k=0

s(h(f)− h(f rk )) · α(k) f rk ∈ ORF r(f);

s(x) =

{
1 if x ≥ 0
0 if x < 0

where m is the number of facets uniformly spaced on the ring (m is called the
spatial resolution). When the triangulation has 6-valence, usually m = 12.
However, 6-valence on vertices is a strong assumption that is not verified
by real scans: to make this assumption suitable for real applications, the
authors in [WBdB15] suggest to oversample or subsample the ring.

3.2 MeshLBP coding

An histogram can be derived from the definition of meshLBPm
r on all the

facets of a triangulation, once r and m are fixed. As an example, we consider
r = 7, m = 12 and α1 as the weight-function: for each facet f we calcu-
late the meshLBPm

r (f) and store 7 (one for each ring) histograms made of
m + 1 bins. For every value of r, we increase the value of the k-th bin of
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(a) (b)

Figure 3: (a) A LBP-histogram and (b) a mean LBP-hist.

the r-th histogram by 1 if the value of meshLBPm
r (f) is k. This can be

represented as a single histogram that stores in the i-th row the correspond-
ing meshLBPm

i (f) vector is equivalent to a matrix of dimension 7× 13, as
shown in figure 3(a). We call such histogram LBP-histogram.

We also call the average of the LBP-histograms over the triangulation
facets (sum of all the LBP-histograms divided by the number of facets) mean
LBP-hist (see figure 3(b)) and it’s used as a description of the 3D model.

3.3 Distance

Given two histograms (LBP or mean LBP) their distance is defined in
[WBdB15] as their Bhattacharyya distance. Briefly, the Bhattacharyya dis-
tance Bd between two densities p and q in X is defined as follows:

Bd(p, q) =
√

1−BC(p, q);

BC(p, q) =
∑
x∈X

√
p(x)q(x).

More details about this distance can be found at [DD09]. Other distances
between feature vectors are theoretically possible, such as the Earth Mover’s
Distance (EMD) [DD09].

As a consequence the distance between two triangulations is defined
in terms of their LBP and mean LBP distances. More in detail, given a
collection of triangulations, a similarity matrix D is built as follows. The
entry D(i, j) represents the values of Battacharyya distance between the the
i-th and j-th mean LBP-hists while D(i, i) is the mean intra variance of the
i-th mesh, i.e., the average of the Battacharyya distances among the i-th
mean LBP-hist and every LBP-histogram originated from the facets of the
i-th mesh. An example of the matrix D is shown in figure 4. By definition,
the terms D(i, i) can differ from zero, in particular, if there is a large intra
variance of the LBP histograms.
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Figure 4: An example of distance matrix between 4 meshes.

3.4 Computational complexity

The computational complexity of meshLBP algorithm depends on two main
factors, the number of facets nf and the radial resolution r: in case the vertex
valence is 6 everywhere the computation of the i-th ring description requires
12i operations, thus the computation of each multi-ring description is O(r2)
for every facet. Then, the cost of creating the ORFs for the whole model
is O(r2nf ). The oversample and/or subsample operations that guarantee
a constant spatial resolution are usually necessary to deal with real data
and their cost is O(rnf ). As suggested in [WBdB15], the meshLBP can be
approximated using only a limited amount of facets. We are going to discuss
this approximation during our experiments, since usually ’real’ meshes have
a large number of facets.

4 Experiments

In this Section we discuss the experimental environment we used, the results
we have obtained for 3D pattern recognition and classification and current
limitations of the method.

4.1 Dataset and experimental set-up

The method has been tested on a set of 3D models that we derived either
from artefacts collected from the STARC repository [STA] or artificially
built for testing purposes. To process, crop and sample models, we used
Meshlab [Vis] and CloudCompare [Clo].

First, we tailored 4 specific geometric patterns (figure 5) that we call
beard, hair, circlets and skin, representing homonym patterns. These tiles
have approximately the same size and the same number of faces nf and we
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Figure 5: From left to right, on the first row we depict the class represen-
tatives: beard, hair, circlets and skin. On the second row, the respective
mean LBP-hists are shown.

will use these patterns as representatives of a class of geometric patterns;
we call this set of models the geometric classes.

In addition, we tile other 8 patterns, with characteristics in common with
at least one class and that differ over at least the 20% of the surface. In our
experiments, we call this collection of 3D models samples, see figure 6. In
particular, the samples represents: (i) a beard fragment equipped with two
main patterns: the beard one (on around 85% of the mesh) and the skin;
(ii) a texture half-beard half-skin; (iii) and (iv) hair; (v): a circlet pattern;
(vi) circlets hiding half of an human ear; (vii) the lower part of a human face
(mouth and chin); (viii) a skin pattern with a small hair pattern portion.

To experiment with colour patterns we created a synthetic data set,
equipped with 2D patterns, and derived data from the STARC Repository,
see figures 7 and 8. The synthetic dataset is created over an almost flat
tile of skin painted, in sequence, with five different textures, see figure 7.
This type of data simulates a 2D pattern on a 3D model. The patterns have
been chosen in black and white to build a well distinctive separation between
the elements of the pattern and are meant to simulate a chessboard, dots,
stripes, a zebra skin and an hive. The others elements are decorations that
come from the real artefacts of the STARC repository; some representatives
are shown in figure 8.

As a facet descriptor, we analyse two main sets of h functions:

• Curvatures (Mean Curvature, Shape Index, Normal curvature)[KvD92,
CSM03]. Since in the experiments we saw that curvatures are qual-
itatively comparable, results relate to mean curvature when not oth-
erwise specified. Being flat, the ’facet curvature’ is not well defined
a priori. We define the facet curvature as follows: given a triangula-
tion T = (F, V ) and any kind of curvature defined on V , we define
f.c. of a facet f ∈ F the average of its vertexes curvatures. To com-
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Figure 6: Representation of the samples set. Left to right, top to bottom:
Sample 1, 2, 3, 4, 5, 6, 7 and 8.

a) (b) (c)

(d) (e)

Figure 7: Chessboard, stripe, ball, hive and zebra patterns are shown re-
spectively in (a), (b), (c), (d) and (e).

pute curvatures and manage the data we used the Matlab’s toolbox
ToolboxGraph [Pey].

• CIELab colorimetric channels. We adopt the CIELab colour embed-
ding [AKK00], which has been proved to approximate human vision
in a good way. The L channel is used for the luminosity which closely
matches the human perception of light (L = 0 yields black and L = 100
yields diffuse white), whereas the a and b channels specify colours,
from magenta to green (negative values of a indicate magenta, pos-
itive values of a indicate green) and from yellow to blue (negative
values of b indicate yellow, positive values of b indicate blue). Since in
our color patterns lumunisity seems to be discriminative enough, the
experiments are discussed for the L-channel.
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Figure 8: Examples of fragments characterized by a colour pattern. These
meshes were processed with Meshlab [Vis].

The LBP-histograms and mean LBP-hists of curvatures and L-channel are
computed and evaluated separately.

Finally, in the experiments, we adopt the weight-function α1 because it
provides lighter and more compact LBP-histogram and is able to deal with
larger meshes.

4.1.1 Validity of the meshLBP definition on real meshes

Before discussing the capability of the method to correctly describe patterns
we analyse on which facets the meshLBP is defined. As an example, we
consider the beard class and LBP histogram (using mean curvature as the
function h); blue dots in figure 9 represent facets with an invalid meshLBP
description.

Figure 9: The results of a ’validation’ test of the meshLBP description.
Roughly 65% of the facets has a valid meshLBP.

The boundary of every meshes has invalid meshLBP description, whose size
depends on the radial resolution r: indeed, if one of the rings cannot be
created, the meshLBP is considered invalid on all the rings. Despite this, on
real models having degenerate triangles, irregular tessellation, etc., roughly
70% of facets has a valid meshLBP description. In our experiments, we see
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that the invalid facets far from the border are quite ’randomly’ distributed.

4.1.2 Facet sampling

One major issue of the meshLBP method is its computational complexity.
As suggested in [WTBdB15], the meshLBP could be computed on a subset of
facets on every triangulation. In this experiment we tested how the selection
of the facets is crucial and influences the results. We are therefore looking
at the consistency of the results when the number and the facets used to
approximate the meshLBP varies. In practice, we check if the entries of the
distance matrices among the models are stable (their values slightly differ
in percentage with respect to the distance matrix made with all the facets)
when different samples of the models are chosen.

In this analysis we compared the distance matrix obtained with all the
facets with the ones obtained by randomly selecting a limited number M
of facets with valid meshLBP. In this experiment we set M = 1000 and
repeat 1000 time the creation of the distance matrix, each time randomly
selecting 1000 facets on each mesh. The mean LBP-hists obtained using

(a) (b)

Figure 10: Image (a) shows the distance matrix created using all the facets,
while figure (b) represent the one created picking only 1000 instances on the
meshes.

all the facets and M = 1000 samples on the model that are representatives
of the geometric patterns are reported in figure 10(a) while figure 10(a)
represents an example of the matrix obtained with 1000 facets. From a
statistical analysis of the outcome of this experiment, we noticed that the
meshLBP description is meaningful, in the sense that the approximated
matrix is close to the complete one, when we select approximately the 6/7%
of the facets.
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4.1.3 Towards a weighted multi ring description

Looking at the mean LBP-hist representation and the multi-ring nature of
the facet description, each ring carries a specific information and, depending
on the type of patterns, some rings could become more significant than
others. For this reason, a weight was applied to the rings, providing a kind

Figure 11: Distance matrices obtained using the filter shown in the corrective
title.

of multiplicative factor to each ring. In practice, a weight is a set of 7 positive
numbers that act on the mean LBP-hist as follows: the first row of the mean
LBP-hist is multiplied by the first number of the filter, the second row by
the second number and so on. The test was repeated 1000 times for each
weight. Distance matrices and weights used are shown in figure 11. The
information captured by the smaller rings seems to be less significant, while
the bigger rings seems to be more significant. In practice, we notice that
discarding small rings acts as a smoothing effect applied to the description.

4.2 3D pattern recognition

Firstly, we analyse the set of geometric patterns (the classes) with same sizes
and elements. The meshLBP is computed and a distance matrix is created
as described in section 3.3 (figure 5).

Second, we classify the 8 samples with respect the four classes using their
mean-lbp hists and the nearest neighbour classifier.

The data obtained in this test are summarized in figure 12 and figure 13.
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Figure 12: Mean LBP-hist of the eight samples (with the same order de-
scribed in figure 6).

Figure 13: Distance matrix between classes and samples.

Figure 12 represents the mean LBP-hists of all the samples and Figure 13
depicts the distance matrix created comparing classes and samples mean
LBP-hists. The classification using the nearest neighbour classifier is sum-
marized in the table 1.

• Sample 1. This sample is correctly classified as a ’beard’. In particu-
lar, the fact that the portion of skin is close to the boundary slightly
influences the meshLBP description.

• Sample 2 is challenging because the ’beard’ and ’skin’ patterns are
equally balanced. We think that the classification of this pattern as a
’beard’ mainly depends on the properties of the Bhattacharyya’s dis-
tance that seems to be more sensitive to the ’geometrical’ structure of
the histogram than the absolute value of its entries. Indeed, this dis-
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tance was originally created as a distance between probability density
and when applied to histograms, they are transformed in probability
density thus loosing their value-information.

• Sample 3, 4 and 5: these meshes were pretty simple and correctly
classified.

• Sample 6 is another challenging pattern. Although we could say that
this is half circlets and half skin, it is classified as a ’skin’. We think
that this classification is due to the fact that the circlets are really
close to be a flat pattern and the circlet mean LBP-hist has a unique
peak in the south-west part, that is almost ’deleted’ by the amount of
not-circlets facets LBP-histogram.

• Sample 7 is labelled as a ’beard’ even if it represents a mouth (that is
outside of our classes). In our opinion, this classification is due to the
fact that the mouth is at the ’center’ of the sample. Also, a mouth
can be seen as a depression in the triangulation along a straight line,
as our beard pattern is.

• Sample 8 is mainly composed by a skin pattern and the hair portion
it is not considered due to its position on the border, therefore it is
classified as a ’skin’.

Considering our experiments, the meshLBP description seems well suited for
3D models with a single pattern. Also, it is tailored to deal with patterns
that have high variation of the descriptor, while seems weaker with patterns
that have a small and smooth variation of the facet descriptor h.

We repeated the consistency test also for 3D pattern classification pur-
poses, picking only a limited number M of facet’s instances on every trian-
gulations. We started by fixing M = 500 (around 3 − 4% of the original
facets) and we make this test 1000 times; at the end we sum up all the
results and we look for the ’mean classification’: the classification obtained
with this facet subsampling is identical to the one in table 1. This result is
really encouraging: despite the high amount of time required to compute the
meshLBP for the whole model, meaningful (or at least consistent) results
are obtained only computing the meshLBP on a limited amount of facets.

The following test suggests that also the pattern classification with re-
spect to the CIElab channels, an in particular the L-channel, is promising.
The classification with the L-channel function is performed on a set of 9
fragments tailored from real scans of artefacts, some of these models are
shown in figure 8. The results are shown in figure 14: some fragments are
’well’ separated from the others while for other the distance obtained is of
more difficult interpretation. To validate our feeling, we compared the per-
formance of meshLBP with a simple color histogram with 128 bins. The
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Table 1: Classification results considering all facets.
Beard Hair Circlets Skin

Sample 1 X
Sample 2 X
Sample 3 X
Sample 4 X
Sample 5 X
Sample 6 X
Sample 7 X
Sample 8 X

distance between histograms computed in this way is measured with L2

norm, and the final result is shown in figure 14(b).

4.3 Discussions

A drawback highlighted in our experiments is that a large difference be-
tween the number nf of facets of two models influences the meshLBP per-
formance. While, it works well when applied to patterns of comparable size
and number of facets (also the tests on consistency were conducted with the
same number of subsamples), differences become evident when comparing
irregular triangulations with different number of vertices and vertex valence
different from 6. This bring an over-sample/down-sample of the rings and
requires a regular re-sampling of the pattern. Also, the uniformity of the
mesh sampling is crucial because it indirectly defines the size of the rings
and therefore influences the quality and the size of the facet neighbour and
the sensitiveness of the meshLPB to the pattern characteristics.

Another critical aspect of the method is robustness to noise. Our ex-
periments confirm that the quality of the pattern classification depends on
the smoothness of the surface and a good quality (sharpness) of the pat-
tern borders. To confirm our thinking, we analyse the close-to-flat dataset
with user-defined black and white patterns shown in figure 7. The results
obtained (figure 14(b)) are comparable but, while the color histograms only
depends on the colour distribution the meshLBP seems to be sensitive to
the local topology of the L-channel (i.e., luminosity). The distribution of
black and white facets on the chessboard and the striped pattern should
be quite balanced (not exactly the same because of the irregularity of the
mesh). The irregular distribution of the facets in this mesh and the irregular
pattern borders (figure 15) limit the meshLBP discriminative power.
In figure 16 we analyse the meshLBP distance among these models when
different weights are assigner to the rings of the ORF. From left to right,
from top to bottom, we show the distance using the original meshLBP de-
scription, the distance using only the first three rings of the meshLBP and
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(a) (b)

Figure 14: Distance matrices with respect to the mean LBP (a) and color
histograms (b). Fragments 2 and 4 are identical.

Figure 15: In the elliptic selection we highlight that the facet distribution
is irregular. In the rectangular selection, the pattern is aligned with the
triangulation edges.

the one with the last four rings. Using only large rings acts as a filter of the
local color perturbation and better discriminates the color patterns. This
fact is noticeable in the distance between the chessboard and the striped
pattern (element (2,5) of the distance matrices).

5 Conclusions and future work

From our analysis, the meshLBP description performs well when the 3D
texture has only one pattern but it is sensitive to an irregular distribution of
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Figure 16: Distance matrices with variable ring weights, shown at the top
of each picture.

Figure 17: The red lines indicate the depressions of this meshes: computing
the meshLBP descriptor on those lines could give us better results.

vertices on the triangulation. Requiring the valence of the vertices to be 6 is a
strong hypothesis for scanned models. Since these limitations are apparently
due to the ORF construction that is based on wave-front expansion, we
conjecture that an improvement would be given by considering ”geometrical
rings”, or rather rings of elements with an equal distance from the central
facet. This, even if computationally heavier, would not suffer the irregular
distribution of the vertices. Computing the meshLBP on a limited number
of facets (as the selection is random) seems trustworthy, but it’s likely to
get worse with triangulations that have a huge amount of facets (instances
could be taken all on one area of the mesh, in the worst cases). We also
foresee that the combination of several meshLBP histograms, for instance
computing the sum of the curvatures and CIElab channel, could improve
the performance of the method and yield the joint analysis of colorimetric
and geometric properties.

Finally, we plan to localize regions of the surface that are significant
and to compute the meshLBP description only on that areas, such as in the
example in figure 17. The distinctive characteristic of this pattern is the set
of stripes that are well characterized with zero-Gaussian curvature.

For this reason we foresee that the combination of the meshLBP de-
scription with feature characterization techniques or the Hough transform
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is promising. In this case, the meshLBP descriptor could be computed only
on the feature points (facets) and, depending on the feature itself, the size
of the ring could become feature-adaptive.
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