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Abstract. 

 

We propose a novel algorithm to decompose a 3D object into an atlas of disk-like charts. Decomposition into 

charts with controlled shape and topology is relevant in many engineering areas, such as spline fitting, 

compression and re-meshing. We produce our chartifications by jointly exploiting the Reeb graph of a guiding 

function and its gradient aligned flow paths. The key advancements of our method with respect to similar 

approaches are: (i) a novel strategy to provably remove all T-junctions; (ii) a stable system to trace flow paths 

starting far from critical points; (iii) the exploitation of the regularity of certain functions under isometries (e.g., 

harmonic ones) to produce structurally equivalent chartifications for families of objects posed differently. The 

charts produced by our system can be of two types: topological quads and topological octagons. Both of them can 

be easily gridded to produce full quadrilateral meshes, as we demonstrate in the second part of the article. 
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TopChart: From Functions to Quadrangulations

Sorgente Tommaso, Biasotti Silvia, Livesu Marco and
Spagnuolo Michela

Abstract

We propose a novel algorithm to decompose a 3D object into an at-
las of disk-like charts. Decomposition into charts with controlled shape
and topology is relevant in many engineering areas, such as spline fit-
ting, compression and re-meshing. We produce our chartifications by
jointly exploiting the Reeb graph of a guiding function and its gradient
aligned flow paths. The key advancements of our method with respect
to similar approaches are: (i) a novel strategy to provably remove all
T-junctions; (ii) a stable system to trace flow paths starting far from
critical points; (iii) the exploitation of the regularity of certain func-
tions under isometries (e.g., harmonic ones) to produce structurally
equivalent chartifications for families of objects posed differently. The
charts produced by our system can be of two types: topological quads
and topological octagons. Both of them can be easily gridded to pro-
duce full quadrilateral meshes, as we demonstrate in the second part
of the article.

1 Introduction

Shape chartification is the process of partitioning an arbitrary surface into
a set of charts having simpler topology and geometry [ZMT05]. As demon-
strated by recent research in the field [XKFC18, BJ17, HZL17, HZ16], in
the CAD/CAE community it is often convenient to have charts that can
be easily gridded, and also to make sure that the chartification does not
contain T-junctions [MPKZ10]. Furthermore, chartifications are beneficial
in a whole variety of applications, including remeshing [PSF04, PTC10,
TPP+11, CLS16], spline fitting [CZ17], texturing [PCK04, ULP+15], com-
pression [CKLL09], shape approximation [CSAD04] and fabrication [JKS05].

Our goal is to produce a chartification that remains consistent if the sur-
face undergoes deformations that, at least to some extent, preserve geodesic
distances (i.e. isometries). Moreover, we target a chartification that is T-
junction free and keeps the valence of the chart vertices as regular as possi-
ble. The solution presented in this paper adopts a topology-driven approach
whose ingredients are Reeb graphs and discrete gradient flow paths. The
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Figure 1: Our chartification algorithm in a nutshell. Left: we start from
a triangle mesh and a guiding function; middle left: we extract the Reeb
regions (caps, saddles, cylinders); middle: we refine saddle charts, creating
rhombus domains; middle right: we propagate and eventually delete the
T-junctions generated at the previous step; right: we grid each domain to
produce a quadrilateral remeshing of the input shape.

core novelty relies in the way they are combined together to produce the
final decomposition.

The Reeb graph of a guiding scalar field is used to extract a coarse charti-
fication of the surface, isolating cylindrical and saddle areas, and caps. These
initial charts are then refined by tracing piece-wise linear curves aligned
with the function gradient, ensuring the elimination of all T-junctions and
the construction of only 4-sided and rhombus charts. Rombus charts are 8-
sided charts enclosing saddles. The strategy adopted for refining the coarse
Reeb atlas distributes the boundaries of the charts evenly with respect to
the behaviour of the field over the surface, and sufficiently far away from
the critical points to avoid instability of the chart boundary positioning, a
known critical issue in previous similar approaches [DKG05, HZM+08].

While this machinery is agnostic to the function being used and could
potentially be adopted for any function which admits a Reeb Graph (i.e.,
Morse-Smale), the choice of functions which are invariant under isometries
is key to ensure consistent chartifications across different poses of the same
shape. There is practical evidence that harmonic functions exhibit a consis-
tent behaviour when boundary conditions are well placed [BAS14] (e.g., at
the extrema of protuberances). In our experiments we mostly rely on har-
monic functions, producing consistent decompositions for shapes belonging
to the same class. For completeness, in Section 6 we show a few chartifica-
tions obtained with alternative functions.
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Methods that adopt similar chartification approaches have been pre-
sented in literature, but either they are restricted to a small class of shapes
(e.g., tubular [ULP+15]) or suffer from presence of T-junctions or instabil-
ity in the quad layout (see Section 2 for a detailed discussion). The main
achievements of our method with respect to existing ones can be summarized
as follows:

• consistency across deformations: the chartification is primarily guided
by the topological structure induced by the critical points of a har-
monic field defined over the surface, whose critical points are well
behaving with respect to deformations of the surface and therefore
ensuring consistency of the topological structure across isometric de-
formations;

• stability of the chart structure: we propose a method to trace sep-
aratrices of our coarse Reeb charts as flow paths of the underlying
scalar function. The key point of our tracing system is that we start
tracing them far from critical points. Other approaches, for instance
[DKG05, HZM+08], trace separatrices starting from saddle points. We
observe that this may lead to unstable behaviour, because the gradient
is not defined in critical points and, due to discretization issues, is also
usually unstable nearby;

• T-junction free chartification: our surface charts are topological quads
with no T-junctions. The most recent approach that is able to ob-
tain such a result [TDIN+12] deletes T-junctions by using a geometric
greedy stitching algorithm that is not always able to remove all of the
them. Our T-junction removal system is more general and robust, and
always guarantees a T-junction free chartification.

We demonstrate our chartification algorithm in the context of quadri-
lateral remeshing. In Section 5 we discuss a simple yet effective method
to map both 4- and 8-sided charts onto proper quadrangular domains, pro-
ducing a quadrilateral tessellation of the input surface. By exploiting the
regularity of harmonic functions we also show how to generate consistent
quadrilateral meshes of similar shapes having different discretization and no
cross-parameterization. Differently from the recently published [ACBCO17]
which produces quad meshes with similar structure, our topological ap-
proach produces exactly the same structure (same number of singular ver-
tices and separatrices).

2 Previous work

The chartification process is composed by an earlier decomposition and (op-
tionally) a per chart parameterization. General segmentation algorithms [Sha08]
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may not fulfill all the necessary requirements. Typical requirements are the
generation of charts with disk-like topology [PSF04] (e.g. for texturing), or
the generation of charts where all the charts are topological quads. The
latter are often called quad layouts [BLP+13] and play a fundamental role
in quadrilateral remeshing [TPP+11, ULP+15, CLS16] and spline fitting
[MPKZ10], where the tensor product structure of the domains is exploited.

2.1 Function-driven Decompositions

More relevant to our work are chartification processes driven by some con-
tinuous function defined on the boundary of a three-dimensional shape.

The use of a scalar function to drive a mesh tesselation has been ad-
dressed in [DKG05, DBG+06] and further optimized in [HZM+08]. In [DKG05]
the patch boundaries are generated by both by iso-contours of the function
and orthogonal lines (in practice authors combine iso-contours of the func-
tion f with the flow paths of a scalar function whose gradient is orthogonal
to ∇f). The approach is further developed in [DBG+06]; there the authors
proposed to choose the eigenfunctions of the Laplace operator as possible
scalar functions. In this case the same method generated a family of quad-
rangulations, one per each eigenfunction. In this latter approach, the use
of one scalar function, instead of two orthogonal maps, directly relates the
number of quadrangles and the number of critical points of f . The approach
in [DBG+06] has been further extended in [HZM+08] to provide explicit con-
trols of the orientation and alignment of the quad elements. In this kind
of methods the patch boundaries are generally made by the flow paths that
cross in the critical points of the eigenfunction (the corners of the quad-
rangles). Since an eigenfunction can be regarded as a periodic function, its
period is prescribed by choosing an appropriate eigenvalue. However, there
is no guarantee that the period determined in this way is compatible with
the orientation and alignment control. In practice, where the flow paths
do not intersect transversally (i.e. the eigenfunction is not Morse-Smale)
several adjustments are necessary to deal with particular cases (either par-
tial or total overlaps of the paths, strangulations, etc.). Thus, the spectral
quadrangulation method may fail to generate high quality quads when com-
plex alignment controls are imposed. The idea of considering Morse-Smale
complexes is further addressed in [ZHLB10]; in this case instead of an eigen-
functions and its gradient field, the authors adopt the principal curvature
directions [CSM03]. The resulting tessellation is anisotropic, well aligned
with the principal curvatures but might fails with the tessellation of handles
if the input mesh contains edge whose length is larger than the size of these
handles.

A small number of articles are addressing the problem of generating
tessellations with large tiles. By reducing the number of tiles, the needs
of a topological guide is necessary, and the existing methods are exploit-
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ing Morse functions to address this challenge. Branch et al. [BPB07] used
Morse-Smale complexes, by connecting critical points using flow paths). Lu
et al. [LQSL11] described a method to build a quadrangulation with the aim
to drive the number of tiles only by the topology of the mesh, with good
combinatorial properties, e.g. the degree of each vertex of the quadrangula-
tion is four or five. On the contrary, the n-loop framework [FB11] handles
the question of tessellating a surface with large quadrangles, adjusting the
location of the paths with respect to the geometry, but with the limitation
that paths are edge-based, and the computation it is not computationally
fast (being not driven by a scalar function).

Tierny et al. [TDIN+12] described a method to drive a quadrangulation
using a scalar function, exploiting the associated Reeb graph to generate
cylindrical and disc tiles, as a structure for a small quadrangulation. In their
work, the scalar function is exploited as a parameter to adjust the quadran-
gulation and to avoid multiple intersections in correspondence of critical
points or small slices among to critical level sets. Analogously, Bærentzen
et al. [BAS14] proposed a surface manifold partition into topologically disk-
like and annular regions driven by a mesh-skeleton co-representation. Such a
dual representation coupled the mesh vertices with a Reeb graph-like skele-
ton computed with respect to an harmonic function. Then, a template-
driven quad refitting was applied to each region. The practical robustness
of the harmonic function with respect to intrinsic model deformations made
the skeleton suitable for character animation and sculpting. Similarly to
[TDIN+12] and [BAS14], we also adopt the Reeb graph to drive an initial
mesh subdivision, whose elements are guaranteed to be topological discs and
cylinders. However, in our approach, discs are used to isolate critical points
of the function, contours and flow paths are computed far from criticalities
and cylinders are adopted to decompose the rest of the surface.

2.2 Quad Meshing

We review here quadrilateral meshing processes that start from a coarse de-
composition of the input object into charts. We point the reader to [BLP+13]
for a more comprehensive discussion on quad meshing and alternative tech-
niques. The majority of algorithms start from a decomposition into quadri-
lateral charts [TACSD06, HZM+08, DSC09, TDIN+12, LHJ+14] (possibly
containing T-junctions) and employ a local, per-chart, parameterization to
project vertices on the target surface. Notable exceptions to this rule are
[TPSHSH13, MTP+15], where quadrangulation starting from general polyg-
onal decompositions is applied in the context of animation. When charts are
topological quads, the so generated quadrilateral meshes will replicate the
singular structure if the decomposition, having as irregular vertices (i.e. not
valence four) all and only the points where more (or less) than four charts
meet. The quadmesh connectivity is generated by gridding each chart. At-
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tention must be paid to the transitions along boundaries shared between
adjacent charts, especially in presence of T-junctions. Boundaries should be
split in the same number of quads on both sides. This is a global problem
that can be solved at the cost of two linear equations per chart, imposing
that opposite boundaries of the same chart are be subdivided in the same
number of quads [TACSD06, BVK08]. Usai and colleagues [ULP+15] ob-
served that such a formulation would fail when multiple charts appear on
both sides of the same boundary, and proposed a more general and efficient
formulation. Notice that if charts contain a small number of boundaries
(e.g. less than 7), they can be meshed right away by exploring the space
of quad tilings [TPSH14], as done in [RMB17]. Chart boundaries can also
be relaxed, in order to better follow the geometry or align to sharp creases.
Both [TPP+11, ULP+15] illustrate how to extend the abstract domain tech-
nique [PTC10] to the quadmesh case. In Section 5 we apply a combination
of the techniques discussed in [TACSD06, ULP+15] to produce quadrilat-
eral meshes starting from our chartification process. Differently from them,
our approach guarantees provably correct vertex-domain assignments (Sec-
tion 7).

3 Theoretical background

The theoretical tools which allow us to build our chartification are Reeb
graphs and flow paths. We recall in this Section the key definitions we will
use later on.

3.1 Morse functions

We assume the model is represented by a 2-dimensional manifold closed tri-
angle meshes. Given a surfaceM, we call a Morse function any f :M→ R
with regularity C2 (or more) such that the critical points do not vanish the
Hessian matrix

(Hf)i,j =
∂2f

∂xi∂xj
.

Being the critical points extremely unstable, every non-Morse function can
be easily perturbed for getting a Morse function; actually we know from the
theory that the set of the Morse functions defined over a manifold M is
dense into the set of the smooth functions defined over M.

Our map f will be initially defined on the vertices of M and then ex-
tended by linear interpolation across the edges and the faces, becoming a
global piecewise-linear map. We also assume that f is simple over the sad-
dles (i.e. it is injective on these particular points).
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3.2 Reeb graph

The Reeb graph of a manifold M with respect to real-valued Morse func-
tion f , RG(M,f), is defined as the one-dimensional finite and connected
simplicial complex whose nodes correspond to the critical points of f and
whose arcs join pairs of critical points when the contours evolve from one
critical point to the other without changing topology. More precisely, let
f :M→ R be a simple and Morse function, defined over a manifold M.
The Reeb graph RG of M with respect to f is the quotient space of the
graph of f in M× R via the following equivalence relationship:

(X1, f(X1)) ∼ (X2, f(X2)) if and only if

• f(X1) = f(X2),

• X1 and X2 belong to the same connected component of f−1(f(X1)).

Once we computed the graph RG of (M, f), we consider its geometric
embedding by associating to each node n the coordinates (nx;ny;nz) and
the function value f(n) of the related critical point. We orientate the arcs of
RG according to the growing directions of the values of f . The Reeb graph
definition requires f to be Morse and simple, that is, a function whose critical
points are non degenerate and injective on the critical points.

The Reeb graph has been widely used in the literature to analyse 3D
shapes, and its extension to non-Morse and non-simple functions have been
presented in [BFS00]. The Reeb graph naturally induces a decomposition
of M , or of its discrete representation M, into connected regions, each cor-
responding to an arc the simplicial complex. Figure 2c shows an example of
the relation between the Reeb graph and the corresponding surface decom-
position into regions.

In this work, we base our method on the algorithm for the extraction
of the Extended Reeb Graph, as described in [BPS+10], where we detailed
how to deal with degenerate and non-simple saddles.

3.3 Gradients and integral lines on a triangle mesh

Gradients and integral lines are the main ingredients to build our chartifica-
tion. We assume M to be represented by a triangle meshM, and f such as
to guarantee discrete differentiability conditions, that is, for any edge (vi, vj)
of M we assume f(vi) 6= f(vj).

Gradient In literature there are several methods to estimate gradient vec-
tor fields [dGDT15] on each mesh element (i.e., vertices, edges or triangles).
Being the function defined on vertices and linearly interpolated within each
triangle, the gradient field is piece-wise constant. To compute per-triangle
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(a) (b) (c)

Figure 2: Geometric representation of the Reeb graph of the cactus model
(a), its overlay onto the model (b), and the corresponding decomposition (c)
obtained using an harmonic function with boundary conditions set on the
protrusion tips of a cactus model.

gradients we rely on the discretization proposed in [BPS+10], which straight-
forwardly applies the definition of the gradient of a function of being per-
pendicular to its level sets. Alternative definitions, such as the one derived
from the Green-Gauss method [Liv18] could be used instead. More in detail,
we define the gradient of f on a triangle t(vi, vj , vk), ∇f |t, as the solution
of the 3× 3 linear system: vj − vi

vk − vj
nt

∇f |t =

 f(vj)− f(vi)
f(vk)− f(vj)

0

 . (1)

where nt is the unit length normal of t. In practice, we impose that the
projection of the gradient of f on the plane induced by a triangle is equal to
the vector (f(vj)−f(vi), f(vk)−f(vj), 0). When necessary, we approximate
the gradient at the vertices and edges of the mesh as the weighted average of
all the gradients of the triangles that are incident to an element (2 triangles
per edge, n ≥ 3 triangles per vertex). Weights are proportional to the area
of the corresponding triangles.

The critical points of f corresponds to vertices of M, and we classify
them comparing the function values in a neighborhood of each vertex, as
follows. For each vertex vi ∈ M, we define the 1-star of vi as the set S(i)
of all the edges incident to vi:

S(i) := {j : (vi,vj) is an edge}.

From S(i) we get to the link of i, that is the set of all the edges contouring
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vi, and then to the upper and the lower link:

Lk(i) := {j ∈ S(i) : (vj ,vj+1) is an edge}

Lk+(i) := {j ∈ Lk(i) : f(vj) > f(vi)}

where the lower is defined just by switching the inequality. Last, we consider
the mixed link:

Lk±(i) := {j ∈ Lk(i) : ∃ k ∈ Lk(i) :f(vj) < f(vi) < f(vk)

or f(vj) > f(vi) > f(vk)}.

We claim that if Lk+(i) = ∅ or Lk−(i) = ∅, then vi is a maximum or a
minimum, respectively. If the cardinality of the set Lk±(i) is 2 + 2m, with
m ≥ 1, then vi is classified as a saddle vertex of multiplicity m.

Integral lines They allow us to move on the manifold following the gra-
dient direction. Formally, an integral line γ : R → M of f is defined as
the maximal path on M whose velocity vectors, or tangent vectors, agree
with the gradient of f , meaning that ∂γ

∂s = ∇f(γ(s)) for all s in R. Each
integral line is open at both ends, having its origin (i.e., lims→−∞ γ(s)) and
its destination (i.e., lims→+∞ γ(s)) at critical points of f [PM82].

It can be shown that integral lines are pairwise disjoint, that is, if their
images share a point, then they are the same line. The images of integral
lines cover the whole M , but if we consider the integral lines associated to
the critical points of f , their images define a partition of M . This partition
decomposes M into regions of uniform flow. Indeed the concepts of the
descending manifold and the ascending manifold of a critical point p are
introduced respectively as the set D(p) of points that flow towards p or the
set A(p) of points that originate from p. When the function f is a Morse-
Smale function over M , an ascending 1-manifold intersects a descending
1-manifold at exactly one point [PM82]. This condition is also known as
transversality and it is a stable and generic condition, which is independent
of small perturbations of the function f and M .

On a triangle mesh, moving according to ∇f means following the flows
defined as the steepest ascending or descending paths with respect to the
gradient. Therefore, flow paths are meant to approximate for meshes the
concept of integral lines and a flow path ϕ is a piecewise linear curve over
the mesh faces constituted by a list of nodes that we find intersecting the
gradient vector with the edges of the mesh. From a critical saddle s, at least
four flow paths start (more if the saddle is degenerate), two ascending and
two descending paths. For this reason, for each saddle, we follow the first
four (or more) steepest ascending and descending edges incident in it as the
first edge of an flow paths moving from that.

Starting from a node of ϕ that is a vertex vi of M, we consider the
intersections between the gradient vector ∇f and the edges of Lk(i): in
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general this will give us two points p1, p2 on two different edges with
f(p1) < f(vi) < f(p2), or viceversa. Obviously, we will choose the one
in the direction we are currently moving, and update the triangulation con-
necting the new point with all the adjacent ones so that it becomes a vertex
of the mesh (Figure 3a).

a b

Figure 3: Integral paths and mesh updating

When the starting vertex is a saddle (Figure 3b), we compare the values
of f on the star of vi normalizing with the distance from vi and start moving
along an existing edge: the one maximizing the quantity

δf =
|f(vi)− f(vj)|
‖vi − vj‖

, with j ∈ S(i).

This choice is due to the fact that in proximity of these points the numerical
instability is considerable.

Note that flow paths on meshes never cross, but can merge (for instance,
due to numerical approximations). In any case, once merged they cannot
separate any more.

4 Shape chartification

The chartification process works in three steps. Given RG(M,f), we start
with the initial coarse chartification induced by the Reeb graph onM, using
the algorithm [BPS+10]. This initial subdivision separates cylindrical areas
from saddle areas and caps, that is, the regions containing the maxima
and minima of f (Figure 2a). In the second step, a rhombus chart for
each saddle point is generated (Figure 2b). The chartification is finalized
by removing all the T-junctions generated at the second step, producing
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(a)

(b) (c)

Figure 4: (a): Details of the self-adaptive chartification with a=15 and b=85.
(b) Reeb graph and (c) contour-based decomposition of a cactus model.

11



Figure 5: Contours on a cactus model.

a chartification containing only 4- and 8-sided regions, and having no T-
junctions (Figure 2c). In the remainder of the section we will detail each of
these three steps.

4.1 Coarse Reeb Chartification

Based on RG(M, f), we extract a coarse chart decomposition by cutting the
surface along the isocontours of f , in the range spanned by arcs. Given the
arc e of RG(M, f) and given a value fa ∈ Im(f), we call a contour the curve
γa defined by

γa = f−1(fa) ∩M|e,

whereM|e is the region ofM corresponding to the arc e (see Figure 5).
We may consider the process of drawing contours as cutting the arcs of

RG(M, f), which is equivalent to changing the size of the Reeb charts and
the position of their boundaries, while keeping their adjacency consistent
with the Reeb graph.

Our goal is to produce a chart decomposition whose boundaries are far
enough from the critical points of f , and possibly with uniform size. To
reach this goal, a key point is the choice of the real values fa and fb, which
are used to trace the iso-contours γa, γb (Figure 5). Indeed, they control the
distance between the contours and the critical points and, therefore, the size
of the charts.

We noticed that, especially for harmonic functions, the variation of f
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tends to concentrate around maxima and minima. This means that we
cannot drive the cutting process by a uniform cutting of the image of f along
arcs (the function behaviour is not uniform). Instead, we use an adaptive
process. Given an arc of the RG(M, f), whose nodes are two critical points
v1 and v2, we split the range (f(v1), f(v2)) of Im(f) in intervals of size δ
defined as follows:

δ =
|f(v2)− f(v1)|

n
,

and consider fa = f(v1) + δ ia, with

ia = min
j∈{1,..,n}

{#{v ∈M|e | f(v) ≤ jδ} ≥ a% of #M|e}

where #A is the cardinality of the set A. We proceed similarly for fb,
ib. In all our tests we set n = 30. Note that a and b are free parameters
that we can tweak to control the size of the charts. In simpler words, for
each region with arc e, we count the total number of vertices and, moving
away from the contour that is the counter image of the initial node of e, we
insert two contours containing respectively the a% and b% of the vertices
(Figure 4). In this way, we defined a method which adapts not only to the
variation of f but also to the distribution of points on the mesh.

4.2 Rhombus charts

The first step has produced charts that nicely cover the areas identified by
ERG nodes. The next important step is the construction of well behaved
patches around saddle points, which are handled by the rhombus charts.
Rhombus charts are special 8-sided charts built around saddle vertices and
bounded by four flow paths and three iso-contours .

To describe the generation of a rhombus chart we refer to the example
in Figure 6. Starting from a saddle point s, we follow the two flow paths
opposed to the orientation of the saddle, until we reach the border of another
chart. This operation identifies two points, p1, p2, located at opposite sides
of the same iso-contour. Let us now focus on point p1 (the same process
applies to p2). To define two lateral boundaries of the rhombus chart we
move laterally from p1 along its iso-contour, finding two points a, b. From a
and b we follow the flow paths up to the higher contours, finding the points
qa and qb. Applying the same process to p2, we define the other side of the
rhombus chart.

The shape and size of the chart depends on the distance between p1

and a, b. To fix this degree of freedom, we center a sphere at p1, using as
radius the value r = ld, where l is the average edge length of the mesh and
d is a parameter exposed to the user to control the chart size. In all our
experiments we used d ∈ [1, 10].
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Figure 6: Construction of rhombus charts

For each rhombus chart, eight new T-junctions are generated. In the
subsequent step of the algorithm we will remove them, producing the out-
put chartification composed of only 4- and 8-sided charts, without any T-
junction.

4.3 Essential chartification

This paragraph is simply a stock of the situation, for summing up the point
we got to in our decomposition. After the creation of the rhombus charts,
the mesh M is decomposed into four types of charts:

• type 1 : charts with only one boundary component that corresponds to
an iso-contour of f . In this case, the patch is topologically equivalent
to a disk with one inner max or min critical point;

• type 2 : charts with two boundary components, where each boundary
corresponds to an iso-contour of f . The patch is topologically equiva-
lent to a generalized closed cylinder;

• type 3 : charts with only one boundary component which is composed
by iso-contour segments and flow paths. In general, this patch is topo-
logically equivalent to a generalized open cylinder;

• type 4 : rhombus charts, composed by four segments of flow paths
alternating with four short segments of iso-contours and containing
one saddle vertex in the middle.

Figure 7 depicts these charts on a bitorus. The relative size of the charts
is still unbalanced, with larger charts in parts of the model without critical
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Figure 7: Coarse chartification of a bitorus, the four types of charts

points. A further refinement step is necessary to balance this effect and to
ensure that the final charts are all 4-sided or 8-sided: this is what we are
going to describe in the following. Note that, beside the geometry of the
surface, the size of the of charts depends on three, independent, parameters:
namely, the distance between iso-contours ia and ib and the multiplier d
used to determine the size of the rhombus’ side.

4.4 T-junctions removal

We detail here how we propagate and eventually delete the eight T-junctions
per rhombus chart introduced at the previous step, producing the final char-
tification.

We start from the observation that every corner of a rhombus chart is
defined as the intersection between an iso-contour of f and a flow path. For
each such vertex, we therefore continue tracking the steepest ascending (or
descending) direction until we hit the boundary of a cap region (i.e. a region
containing either a maximum or a minimum of f). By definition, flow paths
will converge to one of these regions and will never intersect to each other,
therefore no new T-junctions will appear during this process. In practice,
due to numerical errors, merging between two adjacent paths may occur.
Should this be the case, we use the parameter d (which determines the
distance between adjacent flow paths) to impose a bigger distance between
such paths, avoid intersections.

At this point, the chartification is composed of as many rhombus charts
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Figure 8: An intermediate step of our chartification process. Rhombus
charts have been created, and the newly created T-junctions propagated
along the flow lines until they reached the boundary of cap regions. Refining
the caps will generate the final chartifications.

as the number of saddle points in f , as many caps as the number of maxima
and minima in f , and all 4-sided charts in between (Figure 8). In order to
complete the chartification process we need to refine the caps, also delet-
ing the T-junctions arose along their boundaries during the aforementioned
propagation process.

For caps having only two T-junctions generated by two incoming flow
path lines, we simply add two new vertices on the boundary of the chart,
and trace two flow paths starting from them. By definition, these paths will
terminate in another cap region, and never in a saddle region.

After this refinement step, we process all the cap charts having even
number of sides (at this point guaranteed to be more than two), and we
split the cap into topological quads. To do so, we consider all the vertices at
the boundary of the chart and alternatively connect them with the critical
point centered at the cap (see Figure 9 for an example).

The algorithm described so far can provably provide a chartification for
any case in which cap regions with even number of sides do not occur. In
case such caps arise, a valid chartification can always be produced by refining
the chartification with a step of Catmull-Clark subdivision (i.e. halving all
the chart sides and adding one new vertex per chart). Nevertheless, such
refinement was never necessary in our experiments. To the best of our
understanding, this unlucky configurations appear only when the function
f does not observe the transversality condition of Morse-Smale complexes
[PM82].
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Figure 9: Type 1 minimum patch of a cactus turned into 4-sided charts.

5 Quad Meshing

The chartifications produced so far are characterized by a coarse yet simple
structure almost entirely made of regular vertices (i.e. vertices having four
incident charts). The only irregular vertices occur nearby local maxima
and minima, where half of the integral lines used to suppress T-junctions
produce valence three vertices, and the other half meet at a vertex with
higher valence (Figure 9). This is a fundamental property to ensure quality
meshes with well-shaped quads having angles close to 90◦ (Figure 10). In the
remainder of the section we discuss how to process such a chartification to
produce a dense quadrilateral mesh. The goal is to grid each patch, making
sure that chart boundaries are tessellated with the same number of elements
at both sides to achieve mesh conformity.

Similarly to previous approaches [ULP+15, TPP+11], we proceed with a
two steps approach: we first map each chart into a m×n parametric square;
then, we use the integer iso-lines of the parametric space to design the mesh
connectivity. We remind the reader that our decompositions is hybrid, as it
contains 8-sided charts around saddle points, and 4-sided charts everywhere
else. Previous methods do not support octagonal charts, thus cannot be
used as-is. We extend [ULP+15, TPP+11] by providing a novel map from
8-sided charts to quadrilateral parametric domains, and also by replacing
their heuristic vertex/domain assignment with a provably robust intrinsic
assignment that exploits our field-driven tracing system (Section 7).

Map generation Here we detail how to map each chart to the paramet-
ric space. We distinguish between maps that bring a quadrilateral chart
to a m × n parametric square (Φquad) to maps that bring an octagonal
chart to a (a+ b+ c)× d parametric square (Φoctagon). Maps are computed
through the well known Tutte embedding, implemented using cotangent
weights [MDSB03] to discretize the Laplace operator (∆) so as to produce
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Figure 10: Top: four different poses for the hand model and their associated
chartifications. All the meshes have different vertex count and connectiv-
ity. Middle: quadrilateral meshes obtained by gridding each domain in a
conforming way (see Section 5 for details). Bottom: mesh close ups; our as-
conforming-as-possible map generates well shaped quads with angles close
to 90◦.

as-conformal-as-possible (i.e., angle preserving) maps. For a visual example
of how these maps are realized, please refer to Figure 11.

B0 

B1 

B2 

B3 

Let B0, B1, B2, B3 be the counter clock-wise list of
piece-wise linear boundaries of a given patch. We denote
the length of the i-th boundary as |Bi|, and the length
of the same boundary up to the point p ∈ Bi as |p|. We
realize the map Φquad and compute the uv coordinates of
the parametric square by solving the following Laplace
equation, subject to Dirichlet boundary conditions:



u = 0 ∀p ∈ B0

u = n ∀p ∈ B2

u = n · |p||B1|
∀p ∈ B1

u = n · |p||B3|
∀p ∈ B3

∆u = 0 otherwise



v = 0 ∀p ∈ B1

v = m ∀p ∈ B3

v = m · |p||B0|
∀p ∈ B0

v = m · |p||B2|
∀p ∈ B2

∆v = 0 otherwise
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Figure 11: To produce dense quadrilateral meshes we map each patch into a
m× n square, and use the integer isolines of the parametric space to design
the quad mesh connectivity. Letters a, b, c, d,m, n represent the number of
intervals in which each boundary will be split. Notice that deciding not to
split any boundary leads to a 1 × 1 grid for the quadrilateral domain, and
to a 3× 1 grid for the octagonal domain.
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Similarly, given the ordered list B0, B1, ..., B7 repre-
senting the piece-wise linear boundaries of an octagonal
patch, we realize the map Φoctagon and compute the uv
coordinates of the parametric square as:



u = 0 ∀p ∈ B0, B1, B7

u = d ∀p ∈ B3, B4, B5

u = d · |p||B2|
∀p ∈ B2

u = d · |p||B6|
∀p ∈ B6

∆u = 0 otherwise



v = 0 ∀p ∈ B6

v = a+ b+ c ∀p ∈ B2

v = a · |p||B5|
∀p ∈ B5

v = a · |p||B7|
∀p ∈ B7

v = a+ b · |p||B4|
∀p ∈ B4

v = a+ b · |p||B0|
∀p ∈ B0

v = a+ b+ c · |p||B3|
∀p ∈ B3

v = a+ b+ c · |p||B1|
∀p ∈ B1

∆v = 0 otherwise

19



Notice that the so generated maps cannot be truly conformal, as we are
constraining the boundary of the parametric domain to a fixed square, but
in general will have little angle distortion and produce good tessellations
(Figure 10, bottom).

Grid conformity The map Φquad associated to each quadrilateral do-
main has two degrees of freedom (m,n) which control the integer size of
the parametric space. Similarly, each octagonal map Φoctagon has four de-
grees of freedom (a, b, c, d). To produce a globally conforming quadrilat-
eral mesh (i.e. a mesh without T-junctions [MPKZ10]) these values can-
not be fixed locally, but rather ensure that side-adjacent patches sample
the shared boundary with the same frequency. Several papers have shown
that these degrees of freedom can be fixed by solving an integer linear pro-
gramming problem, where each unknown represents the number of intervals
in which a boundary will be split and is restricted to be strictly positive
[LMPS16, ULP+15, BVK08, TACSD06]. We implemented the technique
described in [ULP+15], which optimizes for as equiareal as possible quads.
In Figure 10 we show various quadrilateral meshes computed with this tech-
nique.

6 Results

We implemented our chartification algorithm in C++, extending the library
developed for [BPS+10] and using Eigen [GJ+10] and CinoLib [Liv17] for
numerics and geometry processing (harmonic functions, quad mesh genera-
tion). All tests were run on a MacBook Pro equipped with a 2,3 GHz Intel
Core i7 processor on which we installed an Ubuntu 16.04 virtual machine
with three CPU and 5GB of RAM dedicated. Running times vary from
fractions of a second for moderate size models to a few seconds for high res-
olution models (see Table 1). In Figures 10 and 15 we showcase a number
of decompositions produced with our method.

6.1 Driving functions

Our chartifications are fully driven by the underlying function f . We only
require such function to be Morse-Smale. For all the results shown through-
out the paper we used harmonic functions, obtained solving the Laplace
problem 4f = 0 subject to manually prescribed Dirichlet boundary con-
ditions on maxima and minima. In Figure 13 we show two chartifications
obtained with alternative functions. Precisely, we used the height function
(i.e. the per vertex z coordinates), and the bi-harmonic function (similar to
the harmonic, but obtained solving 42f = 0).

The method we exposed so far can be applied to any kind of scalar func-
tion f , but the choice of f is obviously critical for the construction of the
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Model Size tfield treeb tchart tT−rem ttot

Cactus 5K 0.04 0.06 0.07 0.15 0.29
Dancer #1 16K 0.10 0.19 0.25 0.5 0.98
Dancer #2 26K 0.13 0.33 0.43 0.74 1.56
Flamingo 26K 0.13 0.26 0.3 0.44 1.05
Hand (Fig 14) 180K 1.43 1.13 1.79 2.62 5.97
Hands (Fig 10) 14K 0.07 0.18 0.18 0.34 0.72
Horse 46K 0.25 0.47 0.66 1 2.22
Kitten 19K 0.19 0.21 0.27 0.36 0.89
Mug 11K 0.05 0.15 0.18 0.24 0.6
Rocker Arm 10K 0.07 0.12 0.15 0.23 0.52
Sphere 8K 0.08 0.14 0.15 0.19 0.5
Tori (Fig 13) 4K 0.03 0.06 0.10 0.12 0.29
Twirl 5K 0.04 0.05 0.07 0.13 0.31

Table 1: Performances of our method. For each model we report its size
(number of vertices), the time necessary to produce the input driving field
(tfield), and running times for each algorithmic step: generation of the ERG
(treeb); initial chartification (tchart); T-junctions removal (tT−rem); and total
(ttot). All times are expressed in seconds. The line corresponding to the
hands in Figure 10 and the tori in Figure 13 report average data.

Reeb graph, and consequently for the result of our analysis. The differ-
ences between different classes of functions mainly depend on the number
of critical points they generate and on their location on the surface, which
emphasizes different shape features. Of course there are not better functions
that others in general, but we can choose the one which better suits the aim
of our work.

Rigid maps, like height or euclidean distance from the barycentre, are useful
for serial decomposition of big numbers of models, since they work auto-
matically without requiring any interaction with the user, but are not really
self-adaptive to the geometry of the shape and they often miss relevant
details.

When we needed an higher level of precision on a single object, we worked
with eigenfunctions and harmonic maps. Laplacian eigenfunctions automat-
ically locate the tips of the shape features as maxima and minima and gen-
erate a low number of Reeb regions with smooth boundaries. Furthermore,
we can compose different eigenfunctions together obtaining refinements of
the graph.

When we use harmonic maps we have to define manually all the maxima
and minima in the Dirichlet boundary conditions: this gives us a great level
of freedom but makes the process much longer. Through the boundary
conditions we can choose to minimize the number of charts, defining only a
maximum and a minimum vertex, or to underline a specific detail inserting
a critical point on it, or also to change the level of accuracy using more
conditions in highly detailed areas and less in the rest of the surface.

Since in our studies we have been focusing on one model at a time, we
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Figure 12: A mosaic of different chartifications and their associated quadri-
lateral remeshing. A variety of different scenarios have been considered,
ranging from complex shapes embedded with simple functions (e.g., the
twist at the top-left corner) to simple shapes and complex functions (e.g.
the sphere in the middle).
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Figure 13: Our algorithm is agnostic about the function being used. Any
univariate Morse-Smale function defined on the object can be used to drive
the chartification process. Here we show a torus chartified using three dif-
ferent functions: height (left column), harmonic (middle column) and bi-
harmonc (right column). For each example we show the function (top line),
the resulting chartification (middle line) and the associated quadrilateral
remeshing (bottom line).

could afford to define the right setting for harmonic functions on each of
them hence most of the examples and the images in this paper are based on
harmonic maps. An interesting approach for managing degenerate cases is
shown in [BPS+10].
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6.2 Structural properties

Our chartifications are characterized by a coarse yet simple structure almost
entirely made of regular vertices. The very same structure is inherited by
the subsequent quadrilateral meshes, of which the initial chartification rep-
resents the coarse layout [CLS16]. The only irregular vertices occur nearby
local maxima and minima, where half of the integral lines used to suppress
T-junctions produce valence three vertices, and the other half meet at a
vertex with higher valence (Figure 9). This is a fundamental property to
ensure quality meshes with well-shaped quads having angles close to 90◦

(Figure 10). Gridding the 8-sided charts for quadrilateral remeshing intro-
duces four additional valence three vertices per chart, located at the corners
of the parametric space (Figure 11).

6.3 Structural coherency

An interesting outcome of our research is that we can exploit the ability
of certain functions (e.g. the harmonic ones) to be stable under isometries,
thus permitting the generation of topologically coherent chartifications of
the same object in different poses. We demonstrate this property in Fig-
ure 10, where consistent chartifications of the same hand in four different
poses are provided. Notice that each decomposition contains exactly the
same number of quadrilateral and romboidal charts, and thus produced
quadrilateral meshes that embed the same quad layout (i.e. number and
connectivity between irregular vertices) [BLP+13]. To this end, we differ
from the recently published [ACBCO17], which produces quad meshes with
only similar structure.

6.4 Computational cost

The combinatorial complexity of the Reeb graph extraction is O(n log n),
where n is the number of vertices of M; efficient algorithms for its compu-
tation were proposed in [CMEH+03, PSBM07]. Denoting |E| the number
of edges of the Reeb graph RG , the set of all the middle contours ∂S
is computed by inserting 2|E| contours in M (two per arc) with O(|E|n)
operations. During this phase, the complexity of the model may increase
with the insertion of new vertices that belong to contours in ∂S. Since each
rhombus definition acts only on a single chart Si, it takes O(|Si|) operations,
where |Si| denotes the number of elements of Si. If that the insertion of ∂Si
into M adds w new elements to M, the overall cost of the rhombus charts
is O(n + w), which is O(|E|n). Therefore, the combinatorial complexity of
the essential shape chartification is O(max(n log n, |E|n)).

For the uniformation of the mesh, we need to connect every vertex of
each rhombus chart to the closest maximum or minimum region. Again, only
one region at time is involved, so it will be O(|Si|) operations per each chart
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Si that we cross. Being I the set of indices such that Si is not a max/min
region, we have O(

∑
i∈I |Si|) operations for every vertex, and eight vertices

per saddle. We can add to this calculation the cost of inserting two vertices
and lines on the k = 2 max/min regions, being basically the same operation,
hence getting a uniform mesh with four or more vertices in the max/min
regions needs O((8s + 2m) ·

∑
i∈I |Si|), with s the number of saddles and

m the number of k = 2 max/min regions. Obviously, we will generally be
summing in a much smaller set than I since we do not have to cross every
region but just to follow the steepest ascending/descending direction.

T-junctions elimination is computed with 1
2(8s + 2m) = 4s + m op-

erations for every max/min region because we connect half of the ver-
tices to the critical point. Together with the previous result, this gives
(8s+ 2m) ·

∑
i∈I |Si|+ (4s+m) ·

∑
i 6∈I |Si| = 6(2s+m) · n, so in conclusion

we pass from the essential chartification to a coarse quad tessellation with
O((2s+m)n).

7 Comparisons

We compare here against the skeleton-driven coarse chartification algorithms
presented in [ULP+15, LMPS16]. As often happens there is no clear winner,
but rather pros and cons for both methods. Skeleton-driven approaches give
their best with tubular shapes that are well described by a curve-skeleton,
producing extremely coarse chartifications with well-shaped domains. On
the same class of shapes, our method is not able to be as coarse and regular,
mainly because saddle points of the guiding function tend to arise where dif-
ferent branches of the skeleton meet, generating a number of long and tiny
quadrilateral charts that emanate from each octagonal chart containing a
saddle (Figure 14). On the other hand, our approach is far more general
and poses almost no limitation on the class of shapes that can be charti-
fied, including objects such as a mug, which could not be processed with
[ULP+15, LMPS16] because its axis is external with respect to the shape,
and therefore it does not admit a skeletal representation [LS13].

Considering more technical aspects, we also observe that [ULP+15] and
[LMPS16] and similar approaches (e.g. [LZLW15]) project the domain de-
composition on the surface with simple ray-casting. While this procedure
performs well on nice and smooth shapes, it may easily fail on detailed
or noisy shapes, producing wrong vertex/domain assignments or creating
ill-defined domains with intersecting boundaries. Heuristics can often cure
wrong vertex/domain assignments [TPP+11] but no guarantees of success
can be provided. In our method, boundaries between adjacent domains are
defined as integral curves of a scalar field. As a result, boundaries are traced
directly on the surface of the object, and vertex/domain assignment is im-
plicit. This allows us to provably produce a correct chartification and sub-
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chartifications

Skeleton-driven
coarse quad layouts

28 charts 45 charts

70 charts 80 charts
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45 charts

Figure 14: Visual comparisons between our chartification method (right)
and the skeleton-driven coarse quad decomposition described in [ULP+15]
(left). While skeleton-driven methods tend to produce coarser decomposi-
tions, they can only process tubular shapes that admit a skeletal represen-
tation, and are not suited for objects like a mug.
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sequent per chart parameterization, regardless the complexity of the shape
being processed or the amount of surface details (Figure 15).

Domain A Domain BDomain A Domain B

surface

surface
integral
curve

integral
curve

Domain A Domain B

Domain 
A

Dom
ain

 B

Figure 15: Previous methods for chart parameterization rely on heuristics
to assign each mesh vertex to the correct domain. In [ULP+15] and ray
casting along surface anti-normal is used (top). While this strategy works if
the surface is nice and fair (top left), wrong vertex-domain assignments may
occur for detailed surfaces (top right). In our approach separatrices between
charts are defined directly on the surface and embedded in the tessellation,
therefore vertex-domain assignment is implicit (bottom).

8 Conclusions, limitations and future work

We introduced a novel topological method to decompose a 3D object into an
atlas of 4- and 8-sided surface charts. These decompositions are important
in a number of applications, ranging from reverse engineering to computer
animation. The main contributions of our approach consist in two robust
and easy to implement methods to trace chart boundaries that align to the
gradient of a guiding field, and remove all T-junctions. While special purpose
approaches (e.g. skeleton-driven chartification [ULP+15]) may be superior
in terms on number and shape of each chart, our method is far more general
as it applies to any closed 3D surface, and it does not rely on heuristics to
assign vertices to each domain. Indeed, tracing chart boundaries directly on
the shape our method is guaranteed to always produce a valid chartification
and accompanying parameterization.

On the downsides, the chartifications we obtain tend to contain ex-
tremely anisotropic charts nearby saddle points, and triangular (or nearly
triangular) charts around polar regions (Figure 9). While these charts are
harmless in the context of quadrilateral remeshing, in applications such as re-
verse engineering they may produce dramatically degenerate patches around
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critical points; a clearly undesired configuration in CAD applications. Nev-
ertheless, this behaviour can be alleviated by locally relaxing the corners of
the offending charts while fixing the global topology, for example iteratively
re-positioning such corners at the center of the surface patch containing all
the charts incident to it. Similar heuristics could also be used to globally re-
lax the chartification and align it to sharp creases or other relevant features.
We believe this type of post processing is beyond the scope of the current
paper, and we leave it as a future work.

Finally, we plan to lift this machinery one dimension up to create volu-
metric decompositions. To this end, we observe that most of the ingredients
we rely on (e.g. the Reeb graph and iso-contours) naturally extend to vol-
umes. What is currently missing, is a method to trace the equivalent of
integral curves on surfaces, which should complement iso-surfaces to bound
each volumetric domain. Research on this topic is currently ongoing within
our research group.
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main parameterization via patch adjacency graphs. Computer-
Aided Design, 82:2–12, 2017.

28
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and Wenping Wang. Spectral quadrangulation with feature
curve alignment and element size control. ACM Transactions
on Graphics (TOG), 34(1):11, 2014.

[Liv17] Marco Livesu. cinolib: a generic programming header only
C++ library for processing polygonal and polyhedral meshes.,
2017. https://github.com/maxicino/cinolib/.

30



[Liv18] Marco Livesu. A heat flow relaxation scheme for n dimensional
discrete hyper surfaces. Computers & Graphics, 71:124 – 131,
2018.

[LMPS16] Marco Livesu, Alessandro Muntoni, Enrico Puppo, and Ric-
cardo Scateni. Skeleton-driven adaptive hexahedral meshing
of tubular shapes. Computer Graphics Forum, 35(7):237–246,
2016.

[LQSL11] Linfa Lu, Xiaoyuan Qian, Xiquan Shi, and Fengshan Liu.
Quading triangular meshes with certain topological con-
straints. J. Comput. Appl. Math., 236:916–923, October 2011.

[LS13] Marco Livesu and Riccardo Scateni. Extracting curve-
skeletons from digital shapes using occluding contours. The
Visual Computer, 29(9):907–916, 2013.

[LZLW15] Lei Liu, Yongjie Zhang, Yang Liu, and Wenping Wang.
Feature-preserving t-mesh construction using skeleton-based
polycubes. Computer-Aided Design, 58:162–172, 2015.

[MDSB03] Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H
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