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Abstract.

We deal with the virtual element method (VEM) for solving the Poisson equation on a domain Q with curved
boundaries. Given a polygonal approximation Q of the domain Q, the standard order m VEM [6], for m increasing,
leads to a suboptimal convergence rate. We adapt the approach of [14] to VEM and we prove that an optimal
convergence rate can be achieved by using a suitable correction depending on high order normal derivatives of
the discrete solution at the boundary edges of Qs which, to retain computability, is evaluated after applying the

projector TTV onto the space of polynomials. Numerical experiments confirm the theory.

Keywords: Virtual element method, curved domain, optimal convergence rate
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HIGH ORDER VEM ON CURVED DOMAINS.
SILVIA BERTOLUZZA, MICOL PENNACCHIO, AND DANIELE PRADA

ABSTRACT. We deal with the virtual element method (VEM) for solving the Poisson equation on
a domain 2 with curved boundaries. Given a polygonal approximation €2; of the domain €2, the
standard order m VEM [6], for m increasing, leads to a suboptimal convergence rate. We adapt
the approach of [14] to VEM and we prove that an optimal convergence rate can be achieved by
using a suitable correction depending on high order normal derivatives of the discrete solution at
the boundary edges of €25, which, to retain computability, is evaluated after applying the projector
IV onto the space of polynomials. Numerical experiments confirm the theory.

1. INTRODUCTION

The virtual element method (VEM) is a PDE discretization framework designed to easily han-
dle meshes consisting of very general polygonal or polyhedral elements [4]. The method can be
considered as a generalization of the Finite Element Method (FEM) to polytopal tessellations, in
that it looks for the solution in a conforming discretization space with a Galerkin approach. By
giving up conformity in the discretization of the bilinear form corresponding to the differential
operator, the method manages to avoid the explicit construction of the basis functions (whence
the name virtual). Everything is computed directly in terms of the degrees of freedom by resort-
ing to suitable “computable” (in terms of the degrees of freedom) elementwise projectors onto
the space of polynomials (see [6]), ultimately allowing to define a discrete bilinear form satisfying
polynomial exactness and stability properties which allow to prove optimal error estimate for dis-
cretization of (arbitrary) order m. Different model problems have already been tackled by using
VEM ([27, 1, 2, 10, 11, 24, 15, 5, 19, 7, 13, 18]), and, while most of the literature deals with the h
version of the method, the p and hp versions were also discussed and analyzed ([3, 9, 22].

In this paper we consider the problem of extending the method to problems in domains with
smooth curved boundaries. As it happens in the Finite Element case, the approximation of the
curved domain by straight facets introduces an error that, for higher order methods, can dominate
the analysis. Different approaches for the accurate treatment of curved domains in the finite ele-
ment framework can be found in literature, see e.g. [25]. Among the different possible approaches
to such a problem, following the guidelines of [14], we choose here to approximate the curved do-
main ) with a polygonal domain €2;, while compensating for the discrepancy in the geometry by
suitably modifying the bilinear form. Complying with the VEM philosophy, the modified bilinear
form will retain the property of being computable in terms of the degrees of freedom. Of course,
other approaches are possible. In [12] the authors propose a direct definition of a modified virtual
element space that accommodates curved elements, whose boundary matches exactly the boundary
of 2. While loosing exact reproduction of polynomials, the resulting method retains optimality
and, contrary to the one we propose here, it is immediately well suited to deal with curved interior
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2 S. BERTOLUZZA, M. PENNACCHIO, AND D. PRADA

interfaces. On the other hand, our approach has the advantage of only requiring, for the imple-
mentation, minor modifications with respect to the polygonal case. To the best of our knowledge,
other numerical methods that can handle curved polytopal meshes are only [17] and [20].

The paper focuses on a simple elliptic model problem in 2D and it is organized as follows. As the
projection method of [14] combines Nitsche’s technique for imposing non homogeneous boundary
conditions [23] with the improved accuracy polygonal domain approximation of [26], we start, in
Section 2, to adapt Nitsche’s method to the Virtual Element framework and we provide a theoretical
analysis of the resulting discretization, proving stability and an error estimate. In Section 3 we
introduce and analyze the discretization for the problem on curved domains, proving also in this
case stability and optimal error estimate. Finally, in Section 4, we test the method on several test
cases, with method of different order. Throughout the paper, we will use the notation A < B (resp.
A Z B) to signify that the quantity A is bounded from above (resp. from below) by a constant
C times the quantity B, with C independent of the mesh size parameter h, the diameter hx the
specific shape of the polygon K, but possibly depending on the polynomial order m of the method,
and on the shape regularity constant oy and o appearing in Assumption 2.1.

2. THE NITSCHE’S METHOD IN THE VIRTUAL ELEMENT CONTEXT

Before considering the problem of solving a PDE on a domain with a curved boundary, let
us discuss how Nitsche’s method for imposing non homogeneous boundary condition [23] can be
applied in the context of the virtual element method. Throughout this section let then {2 denote a
bounded polygonal domain. To fix the ideas, we consider the following simple model problem:

(2.1) —Au = f, in Q, u =g, on 0§,

with f € L?(Q) and g € H'/?(Q). Assume that we are given a family of quasi uniform tessellations
Ty, of Q into polygonal elements K of diameter hx ~ h. We make the following standard regularity
assumptions on the polygons of the tessellation:

Assumption 2.1. There exists constants ag, a3 > 0 such that:

(i) each element K € T}, is star-shaped with respect to a ball of radius > aphg;
(ii) for each element K in 7 the distance between any two vertices of K is > ajhg.

Under Assumptions 2.1, several bounds hold uniformly in hg [21]. In particular, in the following
we will make use of an inverse inequality on the space Py, of polynomials of order less than or equal
to m: for all p € P, and for all j, k with 0 < j < k it holds that

(2.2) Ip

Moreover we will make use of the following trace inequality: for all ¢ € H'(K) we have

(2.3) [$llo.0rc < B ’*llo

i—k
kK S h%( Hp|

j7K'

0K + h%QWLK-

We will consider the standard order m Virtual Element discretization space ([4]), whose definition
we briefly recall. For each polygon K € T;, we let the space B,,(0K) be defined as

B, (0K) = {ve C°(0K) : v|. € P, Ye e EX},
where £X denotes the set of edges of the polygon K. We introduce the local VE space as:
VE™ - {ve HY(K) : v|ox € Bp(0K), Ave P, o(K)}
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(with P_; = {0}). The global discrete VE space V}, is then defined as
(2.4) Vi ={ve HY(Q) :v|g e VEM VK e T}} =
= {ve HYQ) : YK € T}, v|ox € B (0K), Av|g € Pp_o(K)}.

A function in V}, is uniquely determined by the following degrees of freedom

e its values at the vertices of the tessellation;
e (only for m > 2) for each edge e, its values at the m — 1 internal points of the m + 1-points
Gauss-Lobatto quadrature rule on e;

e (only for m > 2) for each element K, its moments in K up to order m — 2.
For any given function w € H?(£2) we can then define the unique function w; € Vj, such that: a) the
values of w and wy at the vertices of the tessellation coincide; b) for each edge e, the values of w and
wy at the m — 1 internal points of the m + 1-points Gauss-Lobatto quadrature rule on e coincide;
c) for each element K, the moments up to order m — 2 of w and wy in K coincide. The function
wy satisfies the following local approximation bound [4]: if w € H*(K), with 2 < s < m + 1, then

(2.5) lw —wrlox + hrlw—wrlx S hiclwls k-

Let now
a(é, ) = L Vo Ve, aF(p) = fK VoV,

and let T}, : H*(K) — P,,,(K) denote the projection defined by
a® (I} ¢,p) = a"(¢,p), Vp€Pm, L{ Y¢ = JK o.

We recall that for wy;, € VK™, szh can be computed directly from the values of the degrees of
freedom ([6]) without the need of explicitly constructing it (which would imply somehow solving a
partial differential equation), by taking advantage of the identity

0
J th'sz—f whAp—i-f wh—p,
K K ok OVK

that allows to express the term of the left hand side in terms of the interior moments of wy, (for
p € P, Ap is a polynomial of degree less than or equal to m —2) and of an integral on the boundary
(where wy, is a known piecewise polynomial). Letting P¥, denote the space of discontinuous piecewise
polynomials of order less than or equal to m

P: = {pe L3(Q) : ik € Py VK € Th},
we let ITV : H(Q) — P¥, be defined by assembling, element by element, the IT}.’s:
V| = MY (dlx), VK € T

The discretization of (2.1) by the Nitsche’s method would consist in looking for u; € V}, such
that for all v, € V}, one has

a(up,vp) — J Oy upvp — J up0yvp, + ’Yh_lf upvp = J fon — J go,up +yh ! J gUh,
o0 o0 o0 Q o0 o0

where 0, stands for d/dv, v denoting the outer normal to Q. As typical for the Virtual Element
method, both at the right hand side and at the left hand side of such an equation we find terms
which are not “computable”, that is that can not be computed exactly with only the knowledge of
the value of the degrees of freedom of uj, and v. Besides the bilinear form a, which can be treated
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by the standard approach, this is the case for all the terms involving d,up and d,v,. As usually
done in VEM, the bilinear form a is then replaced with

an(un, vn) Eah Up, Up),

where
af (¢,%) = o’ (I} ¢, ) + SE (¢ — Myc o, — Icah).

We recall that different choices are possible for the bilinear form SX (see [8]), the essential require-
ment being that it satisfies

5(6.0) £ 55 (0.0) Sa(6.9), Yoe V™ with Mtg =0,
so that the local discrete bilinear forms satisfy the following two properties:
o Stability:
“(6,0) Say (¢,0) S a”(6,0), VoeVET
e m-consistency: for any ¢ € Vj, and p € P, (K)
(2.6) azs (¢,p) = ™ (6, p).

In the numerical tests performed in Section 4 we made the standard choice of defining SX in terms
of the vectors of local degrees of freedom as the properly scaled euclidean scalar product.

As far as the terms involving the normal derivative are concerned, we treat them by replacing
0, up, and 0,vy,, boundary edge by boundary edge, respectively with 0,11V (uy) and 6,11V (vy,). Then
we can write the Nitsche’s method for the VEM discretization of 3.1 as: find uy € V}, such that for
all vy, € V}, it holds that

(2.7)  ap(up,vp) Z A, IV (up) vy, — Z IV (vp )up, + yvh™ LQ UpO

ec£d V¢ G
J fon— ), J —vh™lu),

ecE?

where 7 is a positive constant and £° denotes the set of edges of Tj, lying on 0.

We introduce the norm:

(2.8) lollé = 161 o + 618 a0
and the space H(2) defined as the closure of C*(Q2) with respect to the norm || - [|q. Setting

29)  Buro) =an6.0)— ) [ am¥e)w - Zjanv )6+ h~ jw,

ecE0 V€ ec&?

we start by proving the following lemma:

Lemma 2.2. For all ¢, 1 € H(Q2) we have

(2.10) 1By (0, 0) S ¢l 1l
Moreover, there exists o9 > 0 such that, for v > 7, the bilinear form By, verifies for all ¢ € V},
(2.11) BrA(6,6) Z 18113,

(the implicit constant in the two inequalities depending on 7).
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Proof. We observe that, since ITV(¢) is a polynomial, it is not difficult to verify that the following
inverse bound holds:

(2.12) [0.11%(d)l0e S h2IY(D) 1k, < 2101k,

~

where, for e € £9, K, is the unique polygon of the tessellation having e as an edge. Then we have

3 [n0w S 3 100 @ loclloc < 3 o2l

ecE0 VE ecE? ecE?

0,e-

Obtaining (2.10) is then not difficult. As far as (2.11) is concerned, we have

(2.13) By (6, 6) = an(d,9) +7h~ 0[5 00 — 2(011Y(9), &)
where we use the notation

() =D, | o0
ecEd ¥
We now have the following bounds
@IY(0), 8 S D5 10I1Y(@) ol o

ecE?

Thanks to the inverse inequality (2.12), we can write, for € > 0 arbitrary,

€ 1
loe S §’¢|%,Q + %h el a0-

@IV (), ¢y < X bkl

ec&9

Substituting into (2.13) we obtain, for a fixed positive constant ¢; independent of h

C1

Biy($:9) 2 (1= cie)lélia+ (= —)h '

6,00

We now choose ¢ = 1/(2¢;1) and if v > ~9 with o chosen in such a way that vy — ¢;/e > 0, the
thesis easily follows. O

Existence and uniqueness of the solution of (2.7) easily follow.
We are then able to prove the following result:

Theorem 2.3. Ifue H*(QY), with2 < s < m+ 1, and if we chose vy > 7y, with vy given by Lemma
2.2, then the following error estimate holds

lu = unlle < 1 Hulsg.

Proof. Let uy denote the VEM interpolant and u, € P¥ the L?(£2) projection of u onto the space of
discontinuous piecewise polynomials. For any j, k with 0 < j < k < m + 1 we have, for u € L*()
with u|x € H*(K)

(2.14) lw — wej.c < B Jwle i

For j > 1 the bound (2.14) can be proven by a standard argument combining the bound for j = 0
with an inverse inequality. Moreover we have, for e € EK n €9,

(2.15) [0 (w = wr)llo.e S B2 |w —wrly g + b2 w —welzx S B |wls k.
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We set dp, = u; — up. Using the definition (2.9), summing and subtracting u,, using the m-
consistency (2.6) to replace ap,(ur,dp) with a(ur, dy) and then, summing and subtracting u, we can
write

(2.16) Jlur = wnll§ < Bhy (ur, dn) = By (un, i) =

= Z al (ur — ug, dp) + Z a® (ur —u,dp) + a(u,dy) — (6,u, dp)+
KeTy, KeTy,

By (u =TI (ug)), dp)y — (u, 0,01 (dp)) + (u — ug, ,11V(dp,)> + vh ™ u, dp)
ol Ny = ) = [ fd+ (90,07 dn) — b7
" = El1+ FE2+ FE3+ E4+ E5.
with

El= Y ap(ur—urdy), E2= Y a"(ur—u,dy), E3={0(u—T(us)),dp)
KeTy, KeTy,

B4 = (u—ug, 0,11V(dp)), E5 = yh Y ur —u, dp),
where we used that, as u is the solution of (2.1),
a(u,dp) — {Oyu, dp)y — JQ fd, =0,  {u,0,1T¥(dp)) — vh ™ u, dp) — (g, 0,11 (dy) — vh " dp) = 0.
Let us then bound the different components of the error.

Both E1 and E2 are standardly encountered in the analysis of the VEM method, and a bound
can be found in the literature (see e.g. [4]), yielding

F1 S |dh 1,th_1|u|S7Q, and FE2 S |dh’1,th_1|u|S7Q.

On the other hand we have

\dh

E3S Y ou(u—1Y(ur)oe

ecE?

’0,6'

Now, using (2.15), we have

[0y (u—T1Vup) 0. < 00 (u—tir) fo,e+ O (ur—ws) 0. S 7° ™2 uls +h ™2 (Jux—ugly, ik +ur—ul k)

yielding
E3 < B h Y2, ql|dp
As far as F4 is concerned we have

BA< ) Ju—urloeld V(dn)loe S D 0P uls e, bV ldpl g, S 0 ulsaldnlo.

ecE? ecE?

0,00+

A similar argument yields
B5 < b Hulsoh ™2 dy

0,092
finally giving
llur = unll& < B°Hulsallur — unllo-

Dividing both sides by |[|u; — up[|o and using a triangular inequality we get the thesis. O
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3. THE VIRTUAL ELEMENT METHOD ON DOMAINS WITH CURVED BOUNDARY

Let now consider the solution of the same model problem
(3.1) —Au = f, in Q, u =g, on 02

with, once again, f € L?(Q), g € HY?(0Q), where now Q < R? is a convex domain with curved
boundary 0€) assumed, for the sake of convenience, to be of class C®. In order to solve such
a problem by the Virtual Element method, we assume that () is approximated by a family of
polygonal domains €, 0 < h < 1, each endowed with a quasi uniform shape regular tessellation
Ty, into polygons K with diameter hx ~ h. We assume that all the vertices of Ty lying on 0§y, also
lie on 0€2. As € is convex this implies that €, < Q.

FIGURE 1. Domain €2, tessellation 7j of € into shape regular polygons and polyg-
onal domain € < €2 approximating §2.

3.1. The Projection Method of Bramble, Dupont and Thomée. In order to deal with the
curved boundary, following [14] we apply on the approximating domain 2, a modified version of
Nitsche’s method, which takes into account that the boundary data is given on ¢€2 rather than on
oQp,.

Letting vy, be the outer normal to Qp,, for x € 0y, we let 6(x) > 0 denote the non negative scalar
such that

x + 6(x)vp(x) € 0.

It is known ([14]) that, as © is smooth and convex, we have that

(3.2) op = sup 6(z) = o(h?).
€N,

We let Vj, = H'(Q}) be the order m VEM discretization space relative to the tessellation 7y,
(defined by (2.4)). Setting k = |m/2], the projection method of [14] reads as follows: find uj € V},
such that for all vy, € V}, it holds that

kosi
(3.3) Bhy(un,vp) — Y. J (Z ‘;agth(Uh)> (0, TTV(vp) — vh ™ op)
e j:1 °

ec&?
= L fon — Z J g* (0, TV, — vh ™ oy,)
h

ecE V€

where 5,];hu = (0y,)?u denotes the j-th partial derivative of u in the v, direction and where, for
X € th,

9" (x) = g(x + 5(x)vn()).
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We then introduce the bilinear form A, , defined by

(34) Anq(6,9) = Bry(6:9) = f ( faf Y (u >) (O IV (o) — YR~ wp),

ec&9

and prove the following lemma:

Lemma 3.1. For all ¢, ¥ in H(y,) it holds that

(3.5) [Any(0,9) S 2l Y llay-
Moreover, there exists o > 0 such that for all v > 0 the bilinear form Ay,  verifies for all ¢ € Vj,
(3.6) Anq(6,6) Z 18113,

provided h < ho with hy = ho(y) > 0.

Proof. Let Cy, be defined as
ACXORDY f ( % >¢

ecE?

so that we can write

Apy (6, 0) = Bhoy(¢,0) — Ci(ITV(¢), 0,, ITV (1h) — yh ™ ep).

As for all ¢ € HY(K), I1);(¢) is a piecewise polynomial, using an inverse inequality and the conti-
nuity of the operator II). we get that for e € £ and ¢ € H(Q) we have

(3.7) 105, T (D) o.e S W2 (S k. S 27101 k.

where, once again, K, is the unique element of 75, having e as an edge. Since d5,/h < 1, using (3.7)
we have

(3.8) CL(IT¥(0). )| < ), Z <5h> W 6], 11¥(¢)

eeE9 j=1

\¢|1 a, h/?

as well as
(39) [CI7(0). 2, V(W) < ZZ( ) w10t m06)

eE°
Combining with (2.10) the bound (3.5) easily follows. Let us now consider (3.6). Combining (2.11)
with (3.8) and (3.9) we obtain, for € > 0 arbitrary and ¢1, ¢2 and ¢ fixed positive constants,

Ap (¢, ) = Bry (¢, ) — CII¥(9), 6, ITV(9)) + vh*lckaﬁ(@ o)

o c1 On,
(1—016—62F—C3 )’¢|1 Qn (7—*—037}1) 1”¢||%,aﬂh~

on
S —|ol1.0, Y0, -

(¥)

Vh

We now choose ¢ = 1/(2¢1) and we fix 79 in such a way that v — ¢1/e > 0. For v > ~p, set
now a = vy —c1/e > 0. As 8, = o(h?), we can choose hg in such a way that for all h < hy,
c20n/h + vesop/h < 1/2 and ye3dp/h < a. The thesis easily follows. O

Once again, existence and uniqueness of the solution of (3.3) easily follow. Moreover, the error
estimate given by the following Theorem hold.

Theorem 3.2. Ifue H*(Q) n WFHL2(Q), with k+1<s<m+1, forh < hg and vy > vy (y> 0
and hy > 0 given by Lemma 3.1) the following error estimate holds

= wnlla, B fuloq + AY265 ulks1 0.
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Proof. Let u; denote the usual VEM interpolant. Setting dj, = uy — up and proceeding as in

Theorem 2.3, we have

(3.10) lur — unlld, S Any(ur, dn) — Any (un, dn) =

Z af (up — uq, dy) + Z a® (ur —u, dp) + alu,dp) — {8y, u, dp)+
KeTy, K

(O (w—TIV(uy)), dny — (u, 0y, ITV(dp)) + {u — ug, 0y, TV (dn)) + vh ™ *u, dp)
+yh ™ ur — u, dp)y — Cr(u, 0, TV (dp) — yh™dp) + Cr(u — TV (uz), 8, ITV(dp) — vh ™ dy,)

-, fdn +{g*, 0, 11¥(dp) — vh™'dp)
h

=F1+FE2+ E3+ E4+ E5+ E6+ ET.
with F1, £2, E3, FE4, and E5 as in the proof of Theorem 2.3 and with

k

_ * 6J j —
E6 = Cp(u— TV (us), 6, T1¥(dn)) —vh~'dy),  E7={g" =) ﬁaghu, 0, TIV(dp,) — vh~tdy).

=07

The components E1, E2, E3, E4, E5 can be bounded exactly as in Theorem 2.3. Let us then bound

the last two terms £6 and E7. Since § = o(h?) < h, we have

k
E6 < Y S0, (u—T1%ur)) o, (10, I1%(dh)
ecE? j=1

0,e t hilHdh

0,6)‘

Now, using (2.3) as well as (3.7) we have

15, (u = T1(un))loe < 15, (u = ur)loe + 16, ATV (ur — ur))

< h_1/2\u — Urlj K, + h1/2|u — Ur|j+1,K. + 111/2_j|u7r —urli k., S hs_j_1/2|u|s,Ke,

0,e

where |ur —ur|1 g, is bound by adding and subtracting u and using the VEM approximation bounds

(2.5) and (2.14), yielding
E6 S h*Hulsalldnlle,-

Finally, E7 takes into account the approximation of the curved boundary by projection, and,

following the paper by Thomée, it can be bound as

k
. 5
ETS Y N9 = Y 0, ulo.e(10,,117(dn)

J 0,e t h_IHdh
ec&? j=0""

0.0) S W28 s 0.0, lldnl -

Assembling the bounds for the seven terms we finally obtain

ll6n 112y, < 2°~Hulssn l18nlle, + 720" ulksr,co0ll0n]l, -

Dividing both sides by ||dh|q, and using a triangular inequality we get the thesis.

O

As § = d(h?) and since we set k = |m/2| so that h~=1/2k+1 < p2lm/243/2 < p™ we have the

following corollary.
Corollary 3.3. Under the assumptions of Theorem 3.2, if u € H™ (Q) then

v = unlle, < 2™ |ulmsr0-
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Remark 3.4. While, for the sake of simplicity, we assumed ) to be convex, our reasoning can
be carried out to more general situations, provided dp = o(h). In particular, for non convex
domains, Theorem 3.2 holds, provided Q;, < Q (which, if  is not convex, requires to give up the
assumption that the boundary vertices of Ty, belong to 0€2). For an extension of the method where
this assumption is relaxed, see [16].

Remark 3.5. In defining the method, we set k = |m/2]. Of course, it is possible to choose other
values for the parameter k (for instance, if the condition dj, = o(h?) is not satisfied). Observe that,
in the finite element case, the choice k = m leads to the following discrete equation:

a(up, vy) — f Ov), UBVE, — f ufy (O, v — yh ™ Top) = f fon — f g* (0, v — Yh o)
oQp (71978 Q o

where, for x € e  Qy, uy(x) = p(x + §(x)vp(x)), p being the polynomial in P, such that uj, = p
in K. (K. denoting the only triangular element having e as an edge). In our case we could
expect that a similar property holds where p is replaced by Hv(uh). However, this is not the
case (at least, not exactly). In fact, for k& = m, if we rewrite (3.3) in such a way to single out
IV (up)* (x) = I, (un)(z + 8(2)vp () we get

an(tun, vn) — (B, ITY (un), v
— Y (up)*, 0,1 (vg) — vh ™ o) + ATV (up) — up, 6,11V (vh) — YA~ o)
=, fon —{g*, 0,11 (vg) — vh ™ up),
h

which contains an extra term measuring the discrepancy between uy and Hv(uh) on 08y,

4. NUMERICAL TESTS

In this section we present three different sets of numerical experiments, aimed at testing and
validating the proposed virtual element method for curved domains. More precisely we deal with
the following three different test cases, for each of which the right hand side f and the boundary
data g are chosen in such a way that the solution to our model problem is the one given by,
respectively, (4.1), (4.2) and (4.3).

Test 1. Q = {(z,y) € R?|2? + y? < 1}. The analytic solution is given by
(4.1) u(z,y) = cos(4my/x? + y?).

Test 2. Q is the region bounded by the polar curve x(0) = r(6)cos(0),y(0) = r(0)sin(f), with
r(0) = 2+ sin(96),0 € [0, 27]. The analytic solution is given by

(4.2) u(z,y) = sinc(2.254/22 + y2) cos(6.75m/ 22 + y2).

Test 3.  is the region bounded by the following curves:
z(0) = r(0) cos(8), y(0) = r(0)sin(), with 7(d) = V6, 6 € [r/2,87],
z(0) = r(0) cos(0), y(0) = r(0)sin(h), with 7(9) = 0.9vV0, 0 ¢€ [r/2,8x],
{0} x [0.94/7/2, v/7/2],[0.9v8x, /87| x {0}.

~— ~—

The analytic solution is given by
sin(32tan~!(y/x)) cos(96 tan~!(y/z))

Va? + |

(4.3) u(z,y) =
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Figures 2, 3 and 4 display the three different domains considered (left) and the computed VEM
solution for m = 1 (right).

Observe that, while the first of the three test cases falls under the assumptions under which we
proved our theoretical estimate, this is not the case for the second and third test cases, for both of
which the domain € is not convex. In all three cases, the tessellations 7}, consist in quasi uniform
shape regular Voronoi decompositions of the domain considered. As the grids are not structured,

1/2

we choose to define the mesh size parameter as h = Ny, /7, where Ny is the number of vertices of

the tessellation.

Letting uy' denote the discrete solution obtained by the order m VEM method proposed in the
previous section, for all the three tests we consider the relative error in the energy norm, as well as
in the L?(Q,) norm

s . llv=uilla, 12 _ llu=uiloo,

(4.4) = , =
" llull, [ullo,0,

Tables 1, 2 and 3 report e for the three test cases, for m = [1,...,6]. We also display in

Figures 5, 6, 7 a logarithmic plot of the energy norm error e, and the L? norm eﬁf as a function of

the number of degrees of freedom Npops (which, we recall, is asymptotically proportional to Ny ).

The plots also show the approximate asymptotic convergence estimate obtained by plotting the

. -m/2 __ 1m
functions Np g~ ~ h™.

The numerical results for Test 1 are in agreement with the theoretical estimates. To test the
robustness of the method we considered, in Tests 2 and 3, domains which are not convex; never-
theless the numerical results are also in agreement with the theory and the predicted convergence
rate of Corollary 3.3 is attained, see Tables 3, 2 and Figures 7 and 6.

0.8

0.6 < it
3 ‘\\\x\‘\“*\\\\! il I i i ’/,;'%;7%
\ i lm,f{l i,

i,

\
N \\““‘\\ \

0.2

-0.2 -

0.4t

FIGURE 2. First test case: (left) example mesh; (right) solution computed on the
example mesh for m = 1.
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