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Abstract. 

 

The estimation of the mortality rate function for a stage-structured population is obtained starting from time-

series field data on the abundance of the species. The method is based on the formulation of the mortality as a 

combination of cubic splines and it is applied to the case of Lobesia botrana, the main pest in the European 

vineyards, with data collected in a location in the North of Italy. Mortality estimates are based on 3 years of data 

and are used to obtain the dynamics for two different years. These dynamics give a satisfactory fit of the phenology 

of the pest. The method presented allows to obtain more flexible shape for the mortality rate functions compared 

with previously methods applied for the same pest. 
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demographic model for Lobesia botrana

Sara Pasquali1 and Cinzia Soresina2

1CNR-IMATI “Enrico Magenes”, via Alfonso Corti 12, 20133 Milano, Italy

e-mail: sara.pasquali@mi.imati.cnr.it
2Department of Mathematics - Technical University of Munich

Boltzmannstr. 3, 85748 Garching bei München, Germany

e-mail: soresina@ma.tum.de

Abstract

The estimation of the mortality rate function for a stage-structured

population is obtained starting from time-series field data on the abun-

dance of the species. The method is based on the formulation of the

mortality as a combination of cubic splines and it is applied to the case

of Lobesia botrana, the main pest in the European vineyards, with data

collected in a location in the North of Italy. Mortality estimates are based

on 3 years of data and are used to obtain the dynamics for two different

years. These dynamics give a satisfactory fit of the phenology of the pest.

The method presented allows to obtain more flexible shape for the mor-

tality rate functions compared with previously methods applied for the

same pest.

Keywords: Mortality rate function; stage-structured population; Lobesia bo-

trana

1 Introduction

Population dynamics models play an important role in pest control. A good
knowledge of the temporal dynamics of a pest population can help decision
makers in the choice of the best strategy in terms of application of phytosanitary
treatments. This is a fundamental task in light of the Directive 2009/128/EC
on the sustainable use of pesticides in Europe.

To obtain a good description of the population dynamics it is necessary
to take into account climatic factors, phenology of the plant and, in general,
physical-biological characteristics of the environment in the site of interest. The
population dynamics can be represented using both a phenological model that
describes the percentage of individuals in the different stages and a demographic
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model that accounts for the population abundance in time. Effects of mortality
and fecundity rate functions in phenological models are discussed in Pasquali
et al. [20]. Physiologically based demographic models allow to know the pop-
ulation abundance over time, taking into account the environmental variables
influencing the dynamics of a species. These mechanistic models have been
used since along time (see, for example, [7, 12, 21, 19, 18]). Often, it is useful
to consider the population organized in stages because pests are dangerous for
the crop when they are in a particular phase of their life. The model here con-
sidered describes an age-structured population and it is a particular case of a
more general model presented in [3]. This kind of models have been used for
various pests in the last years [13, 11, 16]. The model gives the abundance of the
population in each stage in time and physiological age. It is based on biodemo-
graphic functions (development, mortality and fecundity) describing the biology
of the species. Development, mortality and fecundity rate functions depend on
environmental variables, mainly temperature.

It is important to have a good estimate of the biodemographic functions to
obtain a reliable model. In general, these rate functions are estimated starting
from literature data on the biology of the species (for example, duration in a
stage for the development, number of eggs produced by an adult female for
the fecundity). Starting from these data, a simple least square method allows
to estimate the parameters of a biodemographic function of a given functional
form. Unfortunately, for the mortality function data are often not available in
literature. In this case, different methods of estimation have to be applied (see,
e.g., [23] for a survey of mortality estimation methods). In case of absence of
data on the mortality rate, mortality estimate can rely on the knowledge of time
series data on population dynamics. Different methods to estimate mortality,
starting from population dynamics time series data, have been proposed in the
last years. Ellner et al. [9] proposed a non-parametric regression model, in [11] a
method based on least squares is presented, while in [16] a Bayesian estimation
method is proposed. In the two last approaches it is required a functional form
for the mortality and the estimate concerns only parameters present in this
function. This is restrictive, then to avoid heavy constraints on the mortality,
we decided to follow the approach proposed by Wood [22] that does not require
a functional form, but express the mortality as linear combination of elements
of a suitable basis. The coefficients of the linear combination are estimated by
minimizing a weighted least squares term that measures the “distance” between
the simulated and the collected population abundance.

The mortality estimation method is applied to the case study of the grape
berry moth Lobesia botrana which is considered the most dangerous pest in
European vineyard. Data on population abundances were collected in Colognola
ai Colli (Verona, Italy) in the period 2008-2012 for the cultivar Garganega. The
method allows to know the behaviour of the mortality rates as function of the
temperature and to forecast the population abundance in future periods.

The paper is organized as follows. In Section 2 the mathematical model de-
scribing the dynamics of the population is presented, in Section 3 the biodemo-
graphic functions for the grape berry moth are specified, in Section 4 is described
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the mortality estimation method and results for the grape berry moth mortality
are reported. Finally, Section 5 is devoted to discussion and concluding remarks.

2 The mathematical model

2.1 The stage-structured population model

The demographic model is based on a system of partial differential equations
that allows to obtain the temporal dynamics of the stage-structured population
and their distribution on physiological age within each stage. Let

φi(t, x)dx = number of individuals in stage i at time t

with age in (x, x+ dx),

i = 1, 2, ..., s, where s is the number of stages. Stages from 1 to s − 1 are
immature stages, and stage s represents the reproductive stage (adult individ-
uals). Note that t denotes the chronological time while x is a developmental
index which represents the physiological age indicating the development over
time [3, 4, 5, 8].

Instead of a deterministic setting in which the population dynamics is de-
scribed through von Foerster equations [3], we prefer to consider a stochastic
approach which allows to take into account the variability of the development
rate among the individuals [4, 5]. The dynamics is described in terms of the
forward Kolmogorov equations [10, 6]

∂φi

∂t
+

∂

∂x

[

vi(t)φi
− σi ∂φ

i

∂x

]

+mi(t)φi = 0, t > t0, x ∈ (0, 1), (1)

[

vi(t)φi(t, x)− σi ∂φ
i

∂x

]

x=0

= F i(t), (2)

[

−σi ∂φ
i

∂x

]

x=1

= 0, (3)

φi(t0, x) = φ̂i(x), (4)

where i = 1, 2, ...s, vi(t) and mi(t) are the specific development and mortal-
ity rates, respectively, assumed independent of the age x, φ̂i(x) are the initial
distributions, while σi are the diffusion coefficients, assumed time independent.
Moreover, the fluxes F i(t) in the boundary condition (2) are evaluated as fol-
lows. The term F 1(t) is the egg production flux and is given by

F 1(t) = vs(t)

∫

1

0

β(t, x) φs(t, x) dx, (5)

where vs(t)β(t, x) is the specific fertility rate. In particular, we consider
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vs(t)β(t, x) = b(t)f(x) eggs/adults with age in (x, x+ dx)/time unit, (6)

where b(t) takes into account the effect due to both diet and temperature, and
f(x) is the fertility profile.

The other terms F i(t), when i > 1, are the individual fluxes from stage i− 1
to stage i and are given by

F i(t) = vi−1(t)φi−1(t, 1), i > 1. (7)

The boundary condition at x = 0 assigns the input flux into stage i, while
the boundary condition at x = 1 means that the output flux from stage i is due
only to the advective component vi(t)φi(t, 1) [3].

The functions φi(t, x) allow to obtain the number of individuals in stage i
at time t:

N i(t) =

∫

1

0

φi(t, x)dx.

2.2 The biodemographic functions

System (1)-(4) requires an explicit formulation (depending on a certain number
of parameters) of basic biodemografic rate functions, for development, fecundity
and mortality for each stage. They models the physiological response of indi-
viduals to environmental forcing variables, which vary over the chronological
time. For poikilotherm organism, temperature is considered the most impor-
tant driving variable; due to this reason, these biodemographic rate functions are
commonly formulated in terms of temperature, which depends on the chronolog-
ical time. Also the dependence on other environmental variables can be taken
into account.

3 Structure of L. botrana population

Lobesia botrana has a stage structured population, generally considered com-
posed by four stages: eggs, larvae, pupae and adults (s = 4). Estimations of
stage-specific biodemographic functions usually rely on bottom-up laboratory
experimental data, while top-down field population data must be used to vali-
date the model. Our approach is different: we use experimental data to estimate
developmental and fecundity rates, but not mortality rates that are very diffi-
cult to measure. For these reasons, we use population time series data for the
mortality estimations applying the method proposed by Wood [22] for formulate
and fitting partially specified models.

In this section we define development and fecundity rate functions for L.

botrana that summarize our knowledge on the biology of the species. We suppose
that development and mortality rate functions depend on time only through
temperature, while the fecundity rate function depends also on the physiological
age, as done in [11].

4



αi βi γi δi

i = 1 0.01 0.8051 1.0904 1
i = 2 0.003 0.662 1.0281 1
i = 3, 4 0.0076 1.7099 1.0929 1.1

Table 1: Parameters of the stage-specific development rate function in (8) for
the four stages of L. botrana: eggs (i = 1), larvae (i = 2), pupae (i = 3) and
adults (i = 4).

3.1 Development rate function

The development rate function v(t), appearing in (1), describe the develop-
ment response curve. Typically, there is no growth below a lower temperature
threshold, while the developmental rate increases and reaches a maximum at an
optimal temperature and then it declines rapidly approaching zero at a lethal
temperature threshold. A lot of functional expressions have been proposed in
literature to describe development [14]. Here, as in [11], we consider a Lactin
function [15] to represent the development of all the stages:

v(t) = δimax
{

0, eα
iT

− e
αiTm−

Tm−T

βi
− γi

}

(8)

where Tm is the lethal maximum temperature, αi is the slope parameter de-
scribing the acceleration of the function from the low temperature threshold to
the optimal temperature, βi is the width of the high temperature decline zone,
γi is the asymptote to which the function tends at low temperatures, and δi is
a coefficient of amplification of the curve.

Parameters of the development rate functions are estimated by means of a
least square method using the datasets in [1, 2] and are reported in Table 1 (see
[11]).

3.1.1 Fecundity rate function

We assume that the eggs production depends on the physiological age of the
adults, and on the chronological time through temperature and phenological
stage of the host plant as environmental variables, as already supposed in (6).
The oviposition profile f(x), as function of the physiological age x, is assumed
to be of the functional form

f(x) = axb−1 exp (−cx)

where a, b, c are parameters to be estimated. This class of functions, reproduc-
ing the shape of a gamma distribution, is sufficiently general to allow the shift
of the mode in all the values of the physiological age interval.

The term b(t) takes into account the influence of environmental variables,
temperature T (t) and phenological stage of the plant P (t), which vary on the
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Plant stage P b0(P )

Inflorescence BBCH 53 0.31
Green Berries BBCH 71 0.48

Maturing fruits BBCH 81 1

Table 2: Values of the step function b0(P ), with steps in three plant phenological
stages, following the BBCH-scale.

chronological time. It is expressed by the product

b(t) = b0(P (t))a0(T (t)),

where b0 is a step function indicating the insect diet changing over time due to
the plant maturation process, and

a0(T ) = 1−

(

T − TL − T0

T0

)2

captures the effect of temperature. The parameter TL indicates the minimum
temperature of reproduction, while T0 the half-width of the temperature repro-
duction interval.

The parameters appearing in the function f(x) of the fecundity rate are
obtained fitting the corresponding oviposition profile in [1], duly converted as a
function of the physiological age; their values are

a = 74270, b = 4.06, c = 15.33.

The values appearing in the function a0(T ) are [11, 13]

TL = 17, T0 = 7.5.

The product f(x)a0(T ) (eggs/female/day) on temperature (◦C) is illus-
trated in Figure 1. Function b0(P (t)), which depends on the phenological age P
of the plant expressed in terms of BBCH-scale [17] is a step function with steps
at the BBCH stages indicated in Table 2 [13].

3.1.2 Mortality rate function

Mortality rates are very difficult to measure, then the functional form of the
mortality rate m(t) cannot be easily determined as the development and the
fecundity rate functions. Moreover, in [11, 16] the authors defined a mortality
composed by two terms: an intrinsic temperature-dependent (abiotic) mortal-
ity depending on the development rate function, and a constant generation-
dependent extrinsic mortality likely related to external natural control factors,
to be estimated using time series field data on the population dynamics. In this
paper we consider the mortality m(t) as unknown and we apply an estimate
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Figure 1: (left panel) Temperature dependent factor and oviposition profile.
(right panel) Fecundity rate function (eggs/female/days) on temperature (◦C)
and physiological age (dimensionless) for the adult stage of L. botrana for
b0(P ) = 1.

method proposed by Wood [22] for formulating and fitting partially specified
models. With this approach, the obtained mortality carries out both extrinsic
and intrinsic mortality factors. Since we want to estimate the mortality rates
without assuming a specific functional form for them, we do not specify an an-
alytical expression depending on a certain number of parameters. However, we
assume some biologically meaningful hypothesis:

• the mortality rate depends on the chronological time through temperature;

• the mortality rate is a nonnegative continuous function of temperature;

• the mortality rate is strictly positive at two reference temperature.

These assumptions will constitute the constraints on the shape of the mortality
rates in the sequel.

4 Estimation of the mortality rate function

Mortality rates are very difficult to measure and an estimation like those used
for development and fecundity is not always possible. For this reason, we apply
the method proposed by Wood [22] for formulate and fitting partially specified
models. To apply this method we need a dataset of population dynamics. We
consider the same dataset used in [11] relative to the dynamics of the grape berry
moth in a vineyard of Garganega located in Colognola ai Colli, a hilly region
in the North-East of Italy during the period 2008-2012. The experimental field
was not treated with insecticides to avoid controls on the growth of the insect
population. More precisely, to estimate the mortality rates functions we used
the field data collected at Colognola ai Colli in the three years 2008, 2009 and
2011 (model calibration); the data for the other years 2010 and 2012 were used
to test the model (validation), keeping all the other parameters of development
and fecundity fixed.
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4.1 The method

We consider system (1)-(4) in which the development functions and the fecundity
function are chosen as in the previous, and the mortality rates are unspecified.
We want to find the functions mi(t) that result the best fit of the model to field
data of populations densities. Once the model functions are fixed, the system
(1)-(4) can be numerically solved and produce a vector of model estimates µ,
representing the population abundances, corresponding to the observations y.
The goodness of the fit can be quantitatively measured as a weighted least
squared term

d
∑

i=1

wi(yi − µi)
2,

where d is the number of data and wi are the weights. Then, the best fitting
functions mi are those which minimize this quantity.

The unknown functions mi can be expressed as linear combination of a
suitable basis ξi,j(t), i = 1, . . . , s, j = 1, . . . , ni (for instance, a polynomial or
cubic spline basis)

mi(t) =

ni
∑

j=1

pijξij(t).

Therefore, finding the best fitting functions mi is reduced to finding the best
fitting parameters pij , i = 1, . . . , s, j = 1, . . . , ni, collected into the vector
p = [p11, . . . , p1n1

, . . . , psns
]T , which produces the model estimates µ(p) together

with some constraints. The total number of parameters is denoted as np =
n1 + · · ·+ ns. Then our objective is to minimize

q(p) =

d
∑

i=1

wi(yi − µi)
2.

The procedure which leads to an estimates of the coefficients p is the follow-
ing.

• Given a guess of the model parameter vector p, the model equations are
numerically solved and model estimates µ are obtained.

• By repeatedly solving the model with slight changes in parameters, we
obtain an estimate of the d× np matrix J where Jij = ∂µi∂pj . We use

Jij ∼
µi(P + δjej)− µi(P − δjej)

2δj
,

where δj is a small number and ej are vectors of the canonical basis.

• The quantity µ and J are used to construct a quadratic model of the
fitting objective as a functional of p

q(p) ∼ (ŷ − Jp)TW (ŷ − Jp),

where ŷ = y − µ+ Jp, and W is a diagonal matrix with Wii = wi.
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• We find a suggesting direction to modify p in order to minimize the real
fitting objective.

• We iterate these steps to convergence.

It is worthwhile to note that this is a simple version of the method proposed
in [22]. It can be improved choosing a different quadratic model of the fitting
objective or taking into account an additional term in the objective which is a
sum of the “wiggliness” measures for the model unknown functions. However, the
version proposed in this paper, despite its simplicity, gives satisfactory results.

4.2 Model calibration

To estimate the mortality rates functions we used the field data collected in a
Garganega vineyard located in Colognola ai Colli for the years 2008, 2009 and
2011. All the other parameters of development and fecundity are fixed and the
values of the diffusion coefficients are set σi = 0.0001, i = 1, 2, 3, 4. We have
to minimize the sum of the weighted squared differences between simulated
dynamics and observations for all the three years considered in the estimation
phase. More precisely, d = d2008 + d2009 + d2011, where dY is the number of
observation in the year Y .

To run the model for every year, we must know population densities at the
beginning of the season to drive the simulation during the entire growing season
as no other information on the pest abundance is provided. In our study, the
number of adults catches per trap per week recorded until the first larvae of the
first generation are observed, were used as the initial condition of the model.
Hourly temperature data, collected by a meteorological station close to the
vineyard, are used as a driver environmental variable for the model simulation.

Furthermore, we chose the cubic B-spline basis to represent the mortal-
ity rate functions. The basis is built on the nodes [0, 10, 20, 30, 40], which is
a suitable interval of temperature, and hence it consists in seven polynomial
ξj(T ), j = 1, . . . , 7 defined on this interval. The mortality rates function are

mi(t) =

7
∑

j=1

pijξj(t), i = 1, . . . , 4.

Then, it is possible to express the constraints on the shape of the mortality rates
through linear and nonlinear inequalities involving the parameters pij .

The weight matrix W is set in the following way: w1 = w3 = w4, w2 = 10w1.
This choice gives much more importance to the larval stage with respect to the
other stages. The practical reason is that field data are more reliable on the
larval stage than the others, and furthermore, this stage is harmful for the plant,
so the most important for biological control, consequently we focus on this stage.

The shape of the estimated mortality rate functions are reported in Figure
2, while the resulting population dynamics compared with the field data are
shown in Figure 3.
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Figure 2: Shape of the estimated mortality functions for all the stages of the
grape berry moth: we used a cost functional in which we gave more relevance
to the data of the larval stage.

We can observe that the mortality function shows an increasing behaviour
for increasing temperatures greater than an upper threshold and for decreasing
temperatures lesser than a lower threshold, while in the central part of the
temperature interval mortality has lower values. This is in agreement with the
mortality chosen in [11] where second order degree polynomials were chosen for
low and high temperatures.

The simulated dynamics for the three years 2008, 2009 and 2011 (Figure 3)
present a satisfactory fit of the phenology of the grape berry moth, obtained
from the field observations. The simulations are comparable with those obtained
in [11].

4.3 Model validation

The data for the years 2010 and 2012 recorded in Colognola ai Colli were used to
test the model, keeping all the other parameters of development and fecundity
fixed as in the model calibration. The simulated dynamics of all the stages,
obtained using the estimated mortality in Figure 2 for the years 2010 and 2012,
are represented in Figure 4.

Also in this case, a good representation of the phenology of the species, for
the two years considered, is obtained.
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Figure 3: Continuous lines: simulated population dynamics obtained with the
estimated mortality functions of Figure 2. Asterisks: data collected in a Gar-
ganega vineyard in Colognola ai Colli.
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Figure 4: Population dynamics obtained with the estimated mortality function
showed in Figure 2 (continuous line) and compared to field data (asterisks) for
the years 2010 and 2012.

5 Discussion and concluding remarks

A realistic simulation of the population dynamics relies on a good knowledge of
the biodemographic functions describing the biology of the species. Frequently,
literature data on the mortality rate function are not available and the mortality
cannot be easily estimated as the development and the fecundity rate functions.
Other methods, based on the availability of population dynamics datasets, have
been developed [9, 11, 22].

Here we consider the case of the grape berry moth, for which we dispose
of 5 years of dynamics observations. We apply the method proposed by Wood
[22] considering the data collected in three non-consecutive years. This method
returns the estimation of the mortality rate functions corresponding to the best
fit of the dynamics for all the three years, meant as the smaller sum of weighted
squared differences between simulated dynamics and observations.

The estimation method considered in the present paper has some advantages
with respect to the method proposed in [11] and [16] for the grape berry moth
mortality estimation. In [11] and [16] the mortality was represented as sum of
two terms: an intrinsic mortality due to abiotic factors and an extrinsic mortal-
ity due to biotic factors. The intrinsic mortality was estimated using literature
data, while for the extrinsic mortality, estimation methods based on population
dynamics observations were proposed. Here the mortality is considered as a
whole and represented as linear combination of cubic splines. This assures a
greater flexibility for the shape of the mortality.

When considering the sum of the weighted square differences between simu-
lations and observations we give a higher weight to the larval stage because the
measurements of larvae are more precise than for the other stages. Moreover,
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to the end of pest control in vineyards, the larval stage is the most important
since larvae, in particular of second generation, produce serious damages to the
vineyards.

The estimated mortalities (Figure 2) have low values in the central part
of the temperature interval and they, generally, increase for increasing large
values of the temperatures and for decreasing small values of the temperatures.
This behaviour is in agreement with the assumptions made in [11]. In fact,
in that work the authors supposed that the mortality increases as a second
order degree polynomial for large values and small values of the temperatures,
obtaining a satisfactory fit of the population dynamics. Here we obtain an
analogous behaviour of the mortality with again a good fit of the phenology of
the grape berry moth in the years considered for the estimation phase. In some
cases (for example for large and small temperature values for adults or for small
values for eggs) the mortality does not increase quickly. This is not unexpected
because very high and very small temperatures are achieved infrequently, then
it is not easy to have a good estimate of the mortality in these temperature
intervals. On the other hand a not very reliable mortality estimate for unlikely
temperatures does not produce bad results in the simulation of the dynamics
because these values are not reached and do not affect the dynamics.

Mortality estimation procedure has been performed considering three years
of data on population dynamics. Then, the estimated mortalities have been
used to simulate the dynamics for two further years. The satisfactory repre-
sentation of the phenology in these years allows us to state that the mortality
can be actually considered the same for different years (as the development and
the fecundity rate functions). This is an important result because it allows to
estimate the mortality once, considering a fixed number of years of observations
and then to use the same mortalities for all the following years.
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