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Abstract.

We propose a new method for recognising characteristic curves on 3D shapes, identified by a set of characteristic
points. We approximate these curves with known curves, e.g., spirals, their patterns or aggregations, to provide a
localisation and quantitative measurement of style features like decorations, visual motifs or anatomical features
on the digital models of 3D objects. To solve this problem, we adopt a generalisation of the Hough Transform (HT)
which is able to deal with curves represented either in implicit and parametric form and extends the set of curves
so far adopted for curve recognition with HT. In addition, we introduce new rules of composition and aggregation
of characteristic curves into patterns or decorations, not limiting the recognition to a single curve at a time.
Besides planar curves, our method vyields the recognition of spatial curves (see Figure 1): to the best of our
knowledge, this is the first attempt to apply the HT to the recognition of spatial curves without any projection onto
a fitting plane.
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Recognising characteristic elements through the
analysis of curves on 3D models

Chiara Romanengo, Silvia Biasotti, Bianca Falcidieno

Abstract

We propose a new method for recognising characteristic curves on 3D
shapes, identified by a set of characteristic points. We approximate these
curves with known curves, e.g., spirals, their patterns or aggregations, to
provide a localisation and quantitative measurement of style features like
decorations, visual motifs or anatomical features on the digital models of
3D objects. To solve this problem, we adopt a generalisation of the Hough
Transform (HT) which is able to deal with curves represented either in im-
plicit and parametric form and extends the set of curves so far adopted for
curve recognition with HT. In addition, we introduce new rules of composi-
tion and aggregation of characteristic curves into patterns or decorations, not
limiting the recognition to a single curve at a time. Besides planar curves,
our method yields the recognition of spatial curves (see Figure 1): to the best
of our knowledge, this is the first attempt to apply the HT to the recognition
of spatial curves without any projection onto a fitting plane.

1 Introduction

Style is mainly a property of man-made objects (artefacts or handcrafts), it defines
a characteristic way of doing things that is peculiar to a specific time, place or
designer. An object’s style is strongly related to its visibility, since objects which

(d)

Figure 1: A digital model of a shell (a), the set of characteristics points in (b) is
recognised with the Hough transform as a helix curve in (¢). In (d) the points that
best fit with the curve recognised are highlighted on the model.



are not publicly visible usually show little stylistic variability due to their inabil-
ity to transmit public messages [Ran81]. In the visual arts, styles are regarded as
distinctive and recognisable forms which permit the grouping of works containing
these forms into analogous categories [Wikipedia]. Human notions of style are
typically conceived at a high level and stated in vague terms [HLK*17]. Thus, the
characterisation of individual style is inherently abstract, ambiguous and subjec-
tive. Difficult to be formally defined, it is often viewed as a residual category in the
description of 3d shapes. However, style is an important aspect to consider when
checking similarities between objects, prompting the inevitable question of how
styles can be concretely extracted or described. The human perception of style
similarity transcends function, structure and also overall shape. Objects that are
stylistically similar can have a strong variance in these elements. For example, a
table and a chair, a vase and a dish, or a helmet and a cuirass may share a common
style.

In the digital era, where the differences of style cannot be always judged by a
human expert, it is necessary to translate general and vague style definitions into
something measurable in order to evaluate compatibility between objects. Quan-
tifying human perception of style of 3D shapes is crucial for many applications.
There has been a recent interest in research in style-based similarity metrics of
3D content for interior design [LKWS16, HLK*17], architecture [BLL15], archae-
ology [RES16], arts and aesthetics [DKVL16]. Also in some natural forms like
shells, flowers and leaves sometimes we use it to identify peculiar shapes [HT11].

Style can be referred to an object’s global shape (e.g. round, sharp. smooth,
crisp), or to its style defining elements, called style features or patterns ( [TBF18,
MTB18, MTB19]), characteristic lines [APM15], decorations [RES16] or visual
motifs [KKF91]. In particular, characteristic curves or lines play an important role
in the perception of a shape style [HT11].

Contribution In this paper we focus on recognising style curves on 3D shapes,
represented as curve segments identified by a set of vertices and approximated with
known curves, like spirals, their patterns or aggregations, which characterise style
features like decorations, visual motifs or anatomical features on the digital models
of 3D objects.

The focus here is on the extraction of characteristic curves from a set of po-
tentially significant points using a generalisation of the Hough Transform (HT)
[BR12], already introduced in a recent paper [TBF18]. This technique takes ad-
vantage of a rich family of primitive curves that are flexible to meet the user needs.
The method recognises various features, possibly compound, and selects the most
suitable profile among families of curves. Deriving from the HT, the method inher-
its the robustness to noise and the capability of dealing with data incompleteness
as for the degraded and broken 3D artefacts.

We introduce a generalised and extended approach of the previous method
[TBF18], by proposing a technique able to:



e deal with curves represented either in implicit and parametric form;

e add new curves in the set of curves successfully treated with the Hough trans-
form. A vast catalogue of functions is already available in [TBF18], and we
show how to extend it provided that the new curve is expressed in parametric
or algebraic form;

o define new rules of composition and aggregation of characteristic curves into
patterns or decorations;

e cvaluate the goodness of the curve approximation (GoF);

o deal with spatial curves, like the helix of Figure 2. To the best of our knowl-
edge this is the first attempt to apply the HT to the recognition of spatial
curves without any projection onto a fitting plane.

Organisation The remainder of the paper is organised as follows. In Section
2, we briefly review previous research in style characterisation and curve recog-
nition. Section 3 introduces the Hough transform for curves. Section 4 describes
the method in detail and how the HT concept may tackle spatial curves. Section 5
shows the results of the method applied to real 3D scans, recently proposed in an
international contest (SHREC’19 [MGM*19]).

2 State of the art

2.1 Style characterisation

A mainstream strategy to address the characterisation of style elements is to adopt
learning strategies [LKS15,LKWS16]; for instance, defining the style-defining ele-
ments as recurring elements, co-located over a class of geometric shapes [HLK*17].
Being based on a number of positive examples (for instance, obtained with crowd
sourcing strategies), these methods classify one design style at a time. Still lim-
ited to images, the work in [DSG*12] combines geotagged images and learning
approaches to automatically detect the elements of architectural style of a compo-
nent (windows, balconies, street signs, etc.). Learning algorithms can be applied
to study how the perceptual grouping of features is based on the encoding of el-
ements’ shape, context, symmetries, and structural arrangements. This approach
has been recently proposed in [LZH*17] for image patterns, where authors used
different convolutional neural networks trained to recover structure, context and
symmetry information of a pattern. Learning approaches are definitely interesting
and powerful, however, they seem to be scarcely applicable to Cultural Heritage
domain, primarily for the lack of training data and for the incompleteness of arte-
facts.

Related to architecture, the approach proposed in [BLL15] adopts a bottom-
up strategy to characterise the features of a collection of columns starting with



the identification of straight lines with the standard HT. In addition, many works
developed for shape retrieval or shape similarity have some analogy with these
approaches, but it is important to underline once more that object similarities
do not necessarily correspond to style similarities. However, some previous pa-
pers describe techniques potentially useful to identify style-discriminating or style-
defining elements in shape models; for instance, we can cite the works developed
in [RES16, Tal14] in the contest of Cultural Heritage or methods for shape corre-
spondence and symmetry analysis [KZHCO11, MPWCI12].

2.2 Recognition of curves

Characteristic curves are a popular tool for visual shape illustration [KSTO8] and
perception studies support these curves as an effective choice for representing the
salient parts of a 3D model [CGL*08,HT11].

In general, given a set of (feature) points, the curve fitting problem is largely
addressed in the literature, [Far93, Shi95, PT97, DIOHS08]. Among the others,
[APM15] recently grouped the salient points into a curve skeleton that is fitted
with a quadratic spline approximation. Being based on a local curve interpolation,
such a class of methods is not able to recognise entire curves, to complete missing
parts, and to assess if a feature is repeated at different scales.

Besides interpolating approaches such as splines, it is possible to fit the feature
curve set with some specific family of curves. For instance the natural 3D spi-
ral [HT11] and the 3D Euler spiral [HT12] have been proposed as a natural way to
describe line drawings and silhouettes showing their suitability for shape comple-
tion and repair. However, using one family of curves at a time implies the need of
defining specific solutions and algorithms for settings the curve parameters during
the reconstruction phase.

Recently, characteristic curves identification has been addressed with co-oc-
currence analysis approaches [SJTW*11,LWWSI15]. In this case, the curve learning
process is applied to a set of characteristic points. The learning phase is interac-
tive and requires 2-3 training examples for every type of curve to be identified and
sketched; in case of multiple curves it is necessary also to specify salient nodes
for each curve. Characteristic lines are poly-lines (i.e. connected sequences of seg-
ments) and do not have any global equation. These methods are adopted mainly for
recognising parts of buildings (such as windows, doors, etc.) and features in archi-
tectural models that are similar to strokes. Main limitations of these methods are
the partial tolerance to scale variance, the need of a number of training curves for
each class of curves, the non robustness to missing data and the fact that compound
features can be addressed only one curve at a time [SJTW*11].

2.3 Hough transform

The Hough Transform (HT) is a standard pattern recognition technique originally
used to detect straight lines in images, [Hou62, DH72]. Since its original concep-



tion, the HT has been extensively used and many generalisations have been pro-
posed for identifying instances of arbitrary shapes over images [Bal81], or, more
commonly, circles or ellipses. For a detailed analysis of the HT we refer to these
surveys [MC15, KTT99]). The Standard Hough Transform (SHT), as currently
known, was defined in [DH72]. It concerns the detection of any parametric, ana-
lytic, planar curve. In spite of its robustness, its use has been limited by the need
of a parametric expression, the dependence of the computation time and the mem-
ory requirements on the number of curve parameters, and even the need of a finer
parameters quantisation for a higher accuracy of results. The Generalised Hough
Transform (GHT) [Bal81] overcomes the need of a parametric analytic expression
and works on a generic, planar shape. Thus, the GHT is more general than SHT,
as it is able to detect a larger class of rigid objects, still retaining the robustness
of SHT. Nevertheless, the GHT adopts a brute force approach that enumerates all
the possible orientations and scales of the input shape, thus the number of param-
eters in its process is considerably high and prevent its adoption in the 3D space.
Further, the GHT cannot adequately handle similar shapes, as in the case of differ-
ent instances of the same shape, which are comparable but not identical, e.g. petals
and leaves.

Thanks to algebraic geometry concepts, theoretical foundations have been laid
to extend the HT technique to the detection of algebraic objects of co-dimension
greater than one (for instance algebraic space curves) taking advantage of various
families of algebraic planar curves (see [BR12] and [BMP13]). Being so general,
such a method allows dealing with different shapes, possibly compound [TBF18],
and to get the most suitable approximating profile among a large vocabulary of
curves [Shi95].

In 3D, other variants of HT have been introduced and used, but as far as we
know none of them exploits the huge variety of curves. For instance, in [OLA14]
the HT has been employed to identify recurring straight line elements on the walls
of buildings. In that application, the HT is applied only to planar point sets and
line elements are clustered according to their angle with respect to a main wall
direction; in this sense, the Hough aggregator is used to select the feature line
directions (horizontal, vertical, slanting) one at a time. More recently, [TBF18]
has proposed an implementation of the theory described in [BR12] and [BMP13]
for curves in the space that can be modelled as the intersection of a surface and a
plane. Taking advantage of the assumption that characteristic curves can be locally
projected onto a fitting plane, the HT is evaluated for a planar curve and then
re-projected on the object surface. To evaluate the accumulation matrix from an
implicit curve representation, the approximation bounds in [TB14] were adopted.
The method showed its effectiveness for the recognition of features and decorations
over a number of artefacts and archaeological fragments.
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Figure 2: A conical helix

3 Hough transform for curves

This Section summarises the basic concepts behind the HT, its formulation for
implicit and parametric curves and, finally, it focuses on a set of non-trivial curves
that we adopt in our experiments.

3.1 Preliminary concepts

In general, a curve is defined through a continuous function y: 7 — X from an
interval / of the real numbers into a topological space X. In other words, a curve is
a topological space which is locally homeomorphic to a line [Lip69]. In case X is
of three dimensions, such as the Euclidean space, the curve is called spatial, while
if X is a plane, the curve is called planar. Spatial curves that do not lie on a plane
are called skew curves.

To be analytically represented, spatial curves must be expressed as the inter-
section of at least two surfaces. Their recognition is a problem of curve fitting for
a given set of points or approximating a curve for these data points. Differently
from planar curves that need only one equation and can count on large atlases of
basic curves, e.g., [Shi95], spatial curves are much less codified. An example of
spatial curve is the conical helix in Figure 2. In parametric form, a conical helix is
represented by the equation: Y(¢) = (¢cos(z),7sin(z),?).

In the plane, it is well-known that the HT is based on the point-line duality as
follows: points on a straight line, defined by an equation, correspond to lines in
the parameter space that intersect in a single point. This point uniquely identifies
the coefficients in the equation of the original straight line. In general, the duality
concept extends to curves in the space represented as the zero locus of a finite
collection of real analytic functions [TBS18]. Given a family F of curves, a general
point P in the space corresponds to a locus, I'p(F), in the parameter space. The
families F such that, as P varies on a given curve C from F, satisfy the regularity
condition that the hypersuperfaces I'p(F) meet in one and only one point (which
in turn defines the curve C), are called Hough regular.

In case of algebraic curves, it is possible to explicitly verify if the curve is HT-



regular and therefore, the HT accumulation point is unique [BR12]. In case the HT
regularity is not guaranteed, the accumulation point might be non unique and the
user has to select among more potential parameter solutions.
For instance, considering the family F = {C, .} of the conical helix repre-
sented by the implicit equation
> =0

2 2
X Yy _
C . ) a? + b
ab,c - Z Z 3
x=a%cos(%)

2

the Hough transform of a point P = (xp,yp,zp) with respect to the family F is the
locus
Lo(F) {CZB%%, +C2A%2 — A2B22 =0
xp = A cos (%’)

If a family of curves is represented in parametric form, the HT can be derived
directly from the parametric curve equations when the system admits an analytical
solution. For instance, in the case of helices, a parametric form is provided by the
following equation:

x = at" cost
Cape: §y=>bt"sint 1€R, (1)
z=ct"

where n and m are rational numbers and a, b and ¢ are parameters of the family
of curves. Then, the parametric form of the HT of a point P = (xp,yp,zp) can be
derived by solving the linear system with respect to the parameters a, b and ¢ and
it assumes the following expression:

;

Xp 0 0
yp t"sint 0
A(l‘) _ <P 0 " _ xpt"™sint _ xp
- D(t) 0 T t'cost
t"cost xp O
0 0
Tp(F): e
B(t) _ 0 zp I _ ypt"tM cost _
D(l) D(r) 1" sint
t"cost 0 xp
0 " yp
cy= 0 0w
D(l) D(t) t"sint
t"cost 0 0
where t € R, D(t) =| 0  t"sint 0| = > "sintcost and D(t) # 0 in a

0 0 "
neighbour of ¢. Even if shown in the special case of a family of helices, the proce-
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Figure 3: (a) A Lamet curve witha =3, b =2 em =38; (b) acitrus curve witha =3,
¢ = 1; (c) a geometric petal (A) with a =4, b = —4 and n = 50; an Archimedean
spiral witha =1, b = 2.

dure for extracting a parametric expression of I'p(F) holds for every linear system
with respect to the parameters a, b and c.

3.2 Dictionary of curves

The HT in the implicit formulation described in Section 3.1 is able to deal with a
large variety of curves (e.g., besides algebraic curves also curves with a logarith-
mic, exponential or trigonometric representation) and, if a formulation exists, with
curves expressed in parametric form. In this paper, we list a few curves used in our
experiments for characteristic curves recognition; these curves complement the set
proposed in [TBF18]. Finally, we highlight that additional families and combina-
tions of curves are possible [Shi95].

In addition to the Lamet curve, citrus curve, geometric petal (A) and archimedean
spiral (see Figure 3 and [TBF18] for details), the curves used in our experiments
are: the geometric petal (B), the helix curve, the hippopede curve and the tennis
ball curve. The geometric petal (B) is a planar curve, that depends on two real
parameters a > 0 and b # 0. Its polar equation is:

p=a+bcos2n®

with n € N. This curve is contained in a circle with radius a + b and the origin
is the center of symmetry, that becomes a singular point if a < |b| (Figure 4 (a)),
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Figure 4: A geometric petal (B) with (a) a=0.2, b =02, n =3, (b) a =0.2,
b=0.1,n=3.
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Figure 5: (a) A parabolic helix witha =5, b =4.5 and ¢ = 1; (b) a cylindrical helix
witha=6,b=5.5and c = 1.

while if a > |b| there are no singularities (Figure 4 (b)). This curve is mainly used
for the recognition of flowers with an even number of petals.

As already mentioned in Section 3.1 the helix of equation (1) is a spatial curve
that depends on three real parameters a, b and ¢, with ¢ # 0. Using different values
of n and m, we get different families of curves. For example, if m =n =1 we
obtain the conical helix (Figure 2), if m =1 and n = % we get the parabolic helix
(Figure 5 (a)), finally if m = 1 and n = 0 we obtain the cylindrical helix ((Figure 5
(b)).

The hippopede curve is a spatial curve that depends on two real parameters
a and c. It is a special case of the sphero-cylindrical curve, represented by the
intersection of a sphere centered in the origin O and radius a, and the cylinder with
radius b and axis at distance ¢ from O. If c = a — b (Figure 6), we get the hippopede
curve, whose implicit equation is

4y +2=d
2+ (z+b—a)? =D

Finally, our collection includes the spatial curve described by the seam line of
a tennis ball with radius r. It can be seen as the intersection of two orthogonal
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Figure 6: (a) The intersection of a sphere and a cylinder; (b) a hippopede curve
with @ =4 and b = 3. Figure (a) is courtesy of https://www.mathcurve.com/.

(b)
Figure 7: (a) The intersection of two elliptical cylinders; (b) a tennis ball curve

with a = 8 and ¢ = 2. Figure (a) is courtesy of https://www.mathcurve.com/.

elliptical cylinders (Figure 7):
{xz + %(Z —c)? 2

a
y2+%(z—c)2 a2

where a = 4/ # This curve depends on two real parameters a and ¢, with a > 0.

4 The new method

In this paper we extend the procedure based on Hough transforms from algebraic
curves described in [TBF18] both introducing a new curve aggregation method
and implementing the recognition of spatial curves defined by two ipersurfaces,
represented by implicit equations.

4.1 Data pre-processing

We highlight that our method does not depend on a specific characterisation method,
rather it takes care of the recognition of the curves delineated by the characteristic
points. We refer to [CGL*08, LZH*07] for an overview on methods for extracting
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characteristic points and to the SHREC benchmark for an evaluation of methods
for feature curves estimation [MGM*19].

In case we are dealing with geometric curves, we adopt a mean curvature eval-
uation, while in case of colorimetric decorations we adopt the L-channel (luminos-
ity) of the CIELAB space [HP11], converting the RGB values into the CIELAB
ones. The mean curvature is evaluated with the curvature estimation based on nor-
mal cycles [CSMO3] implemented in the Toolbox graph [Pey] in case of triangle
meshes; it is approximated with the polynomial fitting of osculating jets [CP03] im-
plemented in the CGAL package [Thel8] in case of point clouds. The vertices at
which a property is significant (e.g with high and low property values) are selected
as characteristic points. This is automatically achieved by filtering the distribution
of the property values by means of two thresholds m and M. Note that m and M
are two input parameters. Their value varies according to the precision threshold
set for the property used to extract the feature points (e.g., in our case, two typical
values of m and M are 15% and 85%, respectively).

To determine the elements that potentially correspond to a characteristic curve,
the points are aggregated into clusters by adopting the Density-Based Spatial Clus-
tering of Applications with Noise (DBSCAN) method [EKSX96]. The DBSCAN
algorithm requires two parameters: a threshold used as the radius of the density
region, and a positive integer that represents the minimum number of points re-
quired to form a dense region. To estimate the density of the feature points and,
therefore, the minimum number of points in a region, the K-Nearest Neighbor
(KNN) [FBF77] is used. In general, K is an integer number that varies from 3
to 15.

4.2 Curves approximation using Hough transforms

Once we have aggregated the points, we apply to each single group the HT recog-
nition technique. If the potential characteristic curve can be locally flattened onto
a plane without any overlap, it is projected onto the best fitting plane. Such a plane
is defined as the multiple linear regression plane of the set of points and computed
with the least square method. In this case, for recognition purposes, it is enough to
consider a family of planar curves, otherwise we select a family of spatial curves.
The peculiarity of the HT is to estimate in a family of curves, the parameters of
the curve a = (ay,...,a,) that better approximates a given set of points. The curves
considered in this paper have one, two or three parameters. Depending on the
curve, these parameters estimate its bounding box, diagonal, radius, etc. Figure 8
represents the curve fitting in the space of parameters obtained for a hyppopede
and a helix curve. The procedure to find the parameters consists of three steps:

1. Fix a bounded region 7 of the parameter space by exploiting typical char-
acteristics of the chosen family of curves and fix a discretization of F (for
details see [TBF18]).

2. Build an accumulator matrix, whose entries represent the cells. The Hough
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transforms of points of interest are then evaluated and the matrix is updated
by placing each entry of the matrix equal to the number of transforms passing
through the cell corresponding to this entry. For the evaluation, we adopt
the method theoretically proved in [TBS18], which is based on the bounds
evaluation of a given locus V(F), with F = (fi, ..., f), W.r.t a cell centered
at P with radius € (f}, j = 1,...,m, are analytic functions on an open convex
set U € R™). Such bounds depend on the Jacobian of F Jacr and the Hessian
matrices of f; Hy,, j =1,...,m. They are defined as follows:

Bi = [Jacr (P)| o &+ SEH™,

2R

B, =
J®(2+mnRI®H>)

where H*® := ||(H},...,Hp)"|| .,
with Hj := maxguemn | —py |, <e} ||, (0]

1’
J = maxgyepn ||| (x—Py || <e} HJ“C;(X)HOO’

with Jac;r, denoting the Moore-Penrose pseudo-inverse of Jacg, and R <
min{e, W}, with ¢ the smallest singular value of Jacp(P). Since the
above quantities depend on the Jacobian and the Hessian matrices, P must
be a point for which these values are non-trivial. In our method we use the
system CoCoA [ABL] for the symbolic manipulation of matrices.

3. Identify the entry that corresponds to the maximum value of the accumulator
matrix and return the coordinates of its center, which correspond to the pa-
rameters of the curve of the family that best approximates the feature curve.
If there is more than one entry assuming the maximum value, more curves
are potential solutions of the HT and are evaluated.

Figure 8: Curve fitting through Hough transform of a hippopede (a) and a helix
(b) curve. In these examples the points come from a parametric expression of the
curves locally perturbed with a 5% Gaussian noise.

12



4.3 Compound curves

Our method also allows the recognition of compound curves (Figure 9), in two
different ways: the first builds a new family of curves defined by the product of the
equations of the curves of the families composing it; the second aggregates these
curves exploiting previous knowledge.

Figure 9(a) represents the HT fitting of a part of a Greek fret with 8 straight
lines. In this case, the lines are orthogonal to the Cartesian axes and therefore, the
degree of the HT curve is still limited. In general, the product approach can deal
with curves of very high degree (for instance, a flower with 6 petals recognised
with a citrus curve of degree 3, would generate a HT transform of degree 18).

‘_(b)_, :

Figure 9: Two examples of compound curves. (a) The curve is recognised as the
product of 8 straight lines. (b) The six-petal flower is seen as the union of six citrus-
like curves and it is located because one of the extremities of these petal have to lie
between the circles in green.

For this reason, we aim at automatic modelling the rules and parameters that
characterise a style element and replicate them with the same rule. In particular,
we are able to recognise the decorations made of elements that are repeated in the
space in a geometric way, locating the individual components and then aggregating
them according to decoration-specific rules. For instance, in the case of the six-
petal flower that characterises many fragments of votive statues from the Salamis
island [STA], we have identified the following recognition steps:

1. the extraction of the feature points, i.e., the vertices of the model with a
high luminosity value, given the peculiarity of a light decoration over a dark
background [KKF91];

2. the recognition of each single petal with the citrus curve family, thus obtain-
ing the parameters in the coordinates of the salient points of this curve, i.e.
the endpoints of the curve symmetry axes ((Figure 9(b));

3. the evaluation of the rays of the circular crown within which the salient
points have to lie if the petals belong to the same flower (Figure 9 (c)).
4.4 Curve distance estimation
The distance between the two curves C; and C; is defined as the norm L! of the

parameters corresponding to these curves, i.e., d(C1,C2) = |ac,,ac, |1, where ac,
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and ac, are the parameters of the curves C; and C,, respectively.

Note that such a notion of distance assumes that the curve parameters are ho-
mogeneous in terms of the properties measured; this implies that the distance be-
tween two characteristic curves is computed only if they belong to the same family.

4.5 Evaluation

To determine if a curve satisfactorily approximates the set of characteristic points,
we use the notion of Goodness of Fit (GoF), [MPCB15]. Let m be the maximum
value reached by the accumulation matrix and let perc be a percentage of m chosen
in relation to the conditions of the problem to be solved. Let 7" a region subset of
T consisting of the cells corresponding to the entries of the accumulation matrix
whose value is greater than this percentage. At this point, we define a subset of the
initial cluster’s points that contains the "good" points, that is the points P; such that
[p (F)NT' # 0. Let S be the set of these points. Let d; be the Euclidean distance
of the point Ps from the curve C, given by d; = d(P;,C) = infpec|| Ps — P ||2- Then
the measure of recognition reliability is defined as follows:

. d; +d2+---+dus
= jjS ,

GoF :

where S is the cardinality of the set S. The curve C is a good recognition if the
value of GoF is small compared to a given threshold that depends on the context
(for example if it is small compared to the order of magnitude of the parameters).

Computational cost Similarly to the HT of curves expressed in a parametric
form, the cost of the HT detection algorithm described in Section 4 is dominated by
the size of the discretization of the region of the parameters. Such a discretization
consists of M = Hi:l‘lk elements, where ¢ is the number of parameters (in the
curves proposed in this paper, ¢t = 1,2,3) and Jj is the number of subdivisions for
the kth parameter. In case the curves are in implicit form, we need to evaluate,
once for each curve, the symbolic expression of the Jacobian, the Moore-Penrose
pseudo-inverse and Hessian matrices; therefore, even if the the cost of fitting a
curve has the same computational complexity in both cases, for parametric curves
the HT implementation is more intuitive.

5 Experimental results

Our method has been tested on models collected from the web: the Turbosquid
repository [Tur], the AIM@SHAPE repository [VIS15], the STARC repository
[STA] and the benchmark proposed in the SHape REtrieval Contest SHREC’19
(SHREC’19) track on feature curve extraction [MGM*19].
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(b)

Figure 10: (a) Characteristic curves recognised using a family of planar curves,
respectively a Lamet curve, an Archimedean spiral and a citrus curve; (b) charac-
teristic curves recognised with a family of spatial curves, respectively helix curves
and a tennis ball curve

5.1 Recognition of characteristic curves

Figure 10 (a) shows the results obtained on some of the models of artefacts pro-
posed as benchmark for the SHREC’ 19 contest on feature-curve recognition [MGM*19].
Once the feature points are grouped in a set of potential curves, to each group we
apply the curve recognition method described in Section 4. For most of these mod-
els it was possible to locally project the groups onto a plane and then, to recognise
them with a family of planar curves. The central and right columns of Figure 10

15



show, respectively, the recognition of one of the characteristic curves extracted
from the corresponding model and the feature points recognised on the model. In
the case of the shell-like model in Figure 1, we recognise the main style element
with a helix, i.e., a spatial curve. Figure 10 (b) presents further examples of recog-
nition of spatial curves on man-made objects. On the first model it was possible to
recognise two style elements, using the family of helices given by the equation

1
X = ats cost
1,
y=nbtssint teER.
3
z=cts

On the second model the curve outlined by the seam of the tennis ball was recog-
nised with the family of curves

P4i(z—c)=d?
a

P de-of =a

of our dictionary.

5.2 Aggregation of characteristic curves

We recognised compound curves via repeated, aggregation rules, on several archi-
tectural decorations and archaeological fragments. Here we show two examples of
decorative elements: a frieze of flowers repeated in space (floral band) and a Greek
fret. The recognition of the flowers of a floral band has been performed on the
basis of the rules described in Section 4.3. In this way, it is possible to recognise
decorative flowers with a number of petals greater than or equal to 4 (Figure 11).
On the basis of their contiguity, we can aggregate them so that we can recognise
the whole floral band.

To recognise the Greek fret, we firstly identified a single style elements as the
product of 8 straight lines, thus constructing a suitable family of curves defined
as product of equations of lines (Figure 9 (a)). Since these style elements are
represented as geometric reliefs, the characteristic points are detected through the
mean curvature values. Finally, with the parameters obtained for the single style
element, it has been possible to recognise the entire Greek fret (Figure 12 (b)) by
translating the single element.

5.3 Compatibility of characteristic curves

The curve parameters obtained through the HT technique are natural indicators of
the most representative curve and therefore they can be used to compare curves be-
longing to the same family, even if they have been recognised on different objects.
These parameters suggest insights on the style compatibility of the objects them-
selves. Figure 13 shows examples of parts to which we have applied our method
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2)

Figure 11: Two examples of floral band. In (1) we recognised 4 flowers, with six
and four petals, respectively; in (2) we recognised 3 flowers, with six or five petals.

and, thanks to the elements recognised, we have been able to compare in term of
style elements. For recognising the sets of characteristic points in Figure 13(a)
we have used the family of Archimedean spirals; the parameters (a,b) found by
our method have been compared as explained in Section 4.4. In Figure 13(a), the
parts are sorted in increasing order of distance from the leftmost one (that acts as
the query set). These parts come from different models proposed in SHREC’ 19
benchmark [MGM*19]. In particular, looking at the two closest spirals, we noticed
that the two characteristic curves could be part of the same ornament (Figure 13
(b)). Similarly, for the fragments in Figure 13 (c) we successfully recognised the
eyes with curves of the citrus family and we noticed that these eyes could belong
to the same statue.

Finally, Figure 14 shows four different fragments, potentially coming from dif-
ferent votive statues but all with the same stylistic character of a floral band. We
decided to compare these fragments by recognising the 6-petal flowers in the floral
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(b)

Figure 12: (a) A digital model of a Greek fret; (b) the recognition of the entire
Greek fret.

band (i.e., the output of the aggregation procedure detailed in Section 5.2) with the
family of curves geometric petal (B). As can be seen in Figure 14 (b), the recogni-
tion is not always perfect since the flowers have been drawn by hand and therefore
inaccurate, while the family of curves follows precise geometric rules. Despite
this, the parameters we obtain give enough information on the size of the flowers
and through these it is possible to construct a similarity matrix that allows us to
compare the recognised flowers (Figure 14 (c)). Finally, to compare the models we
can average the distances of the flowers that make up their floral bands or take the
minimum of them (Figure 14 (d)). In this way it was possible to conclude that the
floral bands present on the fragments (1), (3) and (4) are similar and therefore they
could belong to the same statue, while the one in the fragment (2) is different.

(@ BN  (©)) S
query d=0.0638 d=0.1529 d=0.3391 d=0.4705 d=0.7976 d=1

(a)

- ~0)=-@—E 'éQ/A D=3

(b) (c)

Figure 13: (a) A curve in input and the most similar curves found with respect to
their increasing distance. The most similar curves interpreted as parts of the same
ornament in (b) or the same mask in (c).
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11 2.1 3.1 12 22 13 14 2.4
11 0 0.2040 | 0.0760 | 0.5535 | 0.4615 | 0.0524 | 0.2657 | 0.0867
2.1 | 0.2040 0 0.1280 | 0.7575 | 0.6655 | 0.2564 | 0.0617 | 0.2147
3.1 00760 | 0.1280 0 0.6295 | 0.5375 | 0.1284 | 0.1897 | 0.0867
12| 0.5535 | 0.7575 | 0.6295 0 0.0920 | 0.5039 | 0.7218 | 0.5428
22| 04615 | 0.6655 | 0.5375 | 0.0920 0 0.4119 | 0.6298 | 0.4508
1.3 | 0.0524 | 0.2564 | 0.1284 | 0.5039 | 0.4119 0 0.3181 | 0.1391
1.4 | 0.2657 | 0.0617 | 0.1897 | 0.7218 | 0.6298 | 0.3181 0 0.1790
2.4 | 0.0867 | 0.2147 | 0.0867 | 0.5428 | 0.4508 | 0.1391 | 0.1790 0

(©)

05

distanza media | distanza minima
Modelli 1 e 2 0.6008 0.4615
Modelli 1 e 3 0.1457 0.0524
Modelli 1 e 4 0.1509 0.0617
Modelli 2 e 3 0.4579 0.4119
Modelli 2 e 4 0.5863 0.4508
Modelli 3 e 4 0.2286 0.1391
(d)

Figure 14: (a) Four different fragments with the same stylistic character of a floral
band; (b) flower with 6 petals recognised with a geometric petal (B) curve; (c)
similarity matrix of the flowers recognised on the four models; (d) medium and
minimum distance between the models.
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5.4 Concluding remarks

This paper describes a new method to recognise characteristic curves on 3D shapes.
As shown in the examples, this technique has been successfully applied to the
recognition of style elements represented by simple curves or their composition,
even in the presence of noise or incompleteness. We approximate these curves with
known curves using a generalisation of the HT able to deal with curves represented
either in implicit and parametric form. As demonstrated, the method allows new
additions of curves in the catalogue of functions already available and supports the
definition of new rules of composition or aggregation of characteristic curves to
recognise compound patterns.

To the best of our knowledge, it is the first method for the recognition via HT
of spatial curves. Indeed, previous HTs for 3D were limited to surface recognition,
such as planes, spheres or ellipsoids. Our method suggests a generic strategy to
deal with characteristic curves represented in terms of the intersection of two or
more surfaces. Till now, the approximation of profiles or style elements with spatial
curves was limited to spline fitting or to specific families of curves with ad-hoc
methods, such as the 3D Euler spiral [HT11]. In the case of Hough transforms, the
same framework easily generalises to more generic families of curves. If the style
elements can be projected onto a plane, their characteristic curves can be handled
as planar curves: in this way we can take advantage of large dictionaries of curves,
while for spatial curves such facilities do not yet exist.

The most appealing property of the HT is its ability of recognising a curve
profile (and therefore a style element) in its entirety, even in presence of noise and
partial data: this implies that the HT is naturally suitable for shape completion and
multiple curve and pattern comparison. Its strength is also its main limitation: to be
effective, the families of curves used for the HT must include a curve that somehow
resembles the style element to be recognised.

Recently, the HT has been proposed also for the fitting of low-degree piece-
wise polynomial curves [CRS18] in images. In this case, the outcome is a spline
curve approximating a profile image that consists of polynomial pieces connected
G' continuously, except in correspondence of cusps, where the order of continuity
is only C°. Although piece-wise splines of low degree polynomials are the most
common curves that can be combined to construct a spatial curve, low degree poly-
nomials cannot span a large number of points, therefore many small segments need
to be blended together to build the desired curve and such a decomposition is not
unique.

References

[ABL] ABBOTT J., BIGATTI A. M., LAGORIO G.: CoCoA-5: a sys-
tem for doing Computations in Commutative Algebra. Available at
http://cocoa.dima.unige.it.

20



[APM15]

[Bal81]

[BLL15]

[BMP13]

[BR12]

[CGL*08]

[CPO3]

[CRS18]

[CSMO3]

[DH72]

[DIOHSO08]

[DKVL16]

ANDREADIS A., PAPAIOANNOU G., MAVRIDIS P.: Generalized
digital reassembly using geometric registration. In Digital Heritage
(2015), vol. 2, pp. 549-556.

BALLARD D. H.: Generalizing the Hough transform to detect arbi-
trary shapes. Pattern recognition 13,2 (1981), 111-122.

BucgL1io D. L., LARDINOIS V., LucA L. D.: What do thirty-one
columns say about a &ldquo;theoretical&rdquo; thirty-second? J.
Comput. Cult. Herit. 8, 1 (Feb. 2015), 6:1-6:18.

BELTRAMETTI M., MASSONE A., PIANA M.: Hough transform of
special classes of curves. SIAM J. Imaging Sci. 6, 1 (2013), 391-412.

BELTRAMETTI M. C., ROBBIANO L.: An algebraic approach to
Hough transforms. J. of Algebra 37 (2012), 669-681.

COLE F., GOLOVINSKIY A., LIMPAECHER A., BARROS H. S.,
FINKELSTEIN A., FUNKHOUSER T., RUSINKIEWICZ S.: Where
do people draw lines? ACM Trans. Graph. 27, 3 (Aug. 2008), 1-11.

CAzALS F., POUGET M.: Estimating differential quantities using
polynomial fitting of osculating jets. In Proc. of the 2003 EG/ACM
SIGGRAPH Symp. on Geometry Processing (2003), pp. 177-187.

CONTI C., ROMANI L., SCHENONE D.: Semi-automatic spline
fitting of planar curvilinear profiles in digital images using the hough
transform. Pattern Recogn. 74, C (Feb. 2018), 64-76.

COHEN-STEINER D., MORVAN J.-M.: Restricted Delaunay trian-
gulations and normal cycle. In Proc. of the 9" Ann. Symp. on Com-
putational Geometry (New York, NY, USA, 2003), SCG ’03, ACM,
pp- 312-321.

DuUDA R. O., HART P. E.: Use of the Hough transformation to
detect lines and curves in pictures. Commun. ACM 15, 1 (1972),
11-15.

DANIELS I1J., OCHOTTA T., HA K. L., SILVA T. C.: Spline-based

feature curves from point-sampled geometry. The Visual Computer
24, 6 (2008), 449-462.

DEV K., KIM K., VILLAR N., LAU M.: Improving style similarity
metrics of 3d shapes. In Proceedings of the 42Nd Graphics Inter-
face Conference (School of Computer Science, University of Water-
loo, Waterloo, Ontario, Canada, 2016), GI ’16, Canadian Human-
Computer Communications Society, pp. 175-182.

21



[DSG*12]

[EKSX96]

[Far93]

[FBF77]

[HLK*17]

[Hou62]

[HP11]

[HT11]

[HT12]

[KKF91]

[KSTOS8]

[KTT99]

[KZHCO11]

[Lip69]

DoOERSCH C., SINGH S., GUPTA A., S1vIC J., EFROS A. A.: What
makes Paris look like Paris? ACM Trans. Graph. 31, 4 (July 2012),
101:1-101:9.

ESTER M., KRIEGEL H. P., SANDER J., XU X.: A density-
based algorithm for discovering clusters in large spatial databases
with noise. In 2" Int. Conf. Knowledge Discovery and Data Mining
(1996), AAAI Press, pp. 226-231.

FARIN G.: Curves and Surfaces for Computer Aided Geometric
Design (3rd Ed.): A Practical Guide. Academic Press Professional,
Inc., San Diego, CA, USA, 1993.

FRIEDMAN J. H., BENTLEY J. L., FINKEL R. A.: An algorithm
for finding best matches in logarithmic expected time. ACM Trans.
Math. Softw. 3, 3 (Sept. 1977), 209-226.

Hu R., L1 W., KAICK O. V., HUANG H., AVERKIOU M., COHEN-
OR D., ZHANG H.: Co-locating style-defining elements on 3d
shapes. ACM Trans. Graph. 36, 3-4 (June 2017).

HoucGH P. V. C.: Method and means for recognizing complex pat-
terns, 1962. US Patent 3,069,654.

HUNT R. W. G., POINTER M. R.: Measuring Colour, Fourth Edi-
tion. Wiley, 2011.

HARARY G., TAL A.: The Natural 3D Spiral. Computer Graphics
Forum 30, 2 (2011), 237-246.

HARARY G., TAL A.: 3D Euler spirals for 3D curve completion.
Computational Geometry 45,3 (2012), 115 — 126.

KARAGEORGHIS V., KARAGEORGHIS J., FOUNDATION A. L.:
The coroplastic art of ancient Cyprus. Nicosia : A.G. Leventis Foun-
dation, 1991. At head of title: A.G. Leventis Foundation.

KOLOMENKIN M., SHIMSHONI I., TAL A.: Demarcating curves for
shape illustration. ACM Trans. Graph. 27, 5 (2008), 157:1-157:9.

KAsSIM A., TAN T., TAN K.: A comparative study of efficient gen-
eralised Hough transform techniques. Image and Vision Computing
17,10 (1999), 737 — 748.

KAICK O. V., ZHANG H., HAMARNEH G., COHEN-OR D.: A Sur-
vey on Shape Correspondence. Computer Graphics Forum (2011).

LIPSCHUTZ M.: Schaum’s Outline of Differential Geometry.
Schaum’s Series. McGraw-Hill Education, 1969.

22



[LKS15]

[LKWS16]

[LWWS15]

[LZH*07]

[LZH*17]

[MC15]

[MGM*19]

[MPCB15]

[MPWC12]

[MTB18]

[MTB19]

LUN Z., KALOGERAKIS E., SHEFFER A.: Elements of style:
Learning perceptual shape style similarity. ACM Trans. Graph. 34,
4 (July 2015), 84:1-84:14.

LUN Z., KALOGERAKIS E., WANG R., SHEFFER A.: Functional-
ity preserving shape style transfer. ACM Trans. Graph. 35, 6 (Nov.
2016), 209:1-209:14.

L1 C., WAND M., WU X., SEIDEL H. P.: Approximate 3d partial
symmetry detection using co-occurrence analysis. In 2015 Interna-
tional Conference on 3D Vision (Oct 2015), pp. 425-433.

LAI Y. K., ZHOU Q. Y., HU S. M., WALLNER J., POTTMANN
H.: Robust feature classification and editing. IEEE Transactions on
Visualization and Computer Graphics 13, 1 (Jan 2007), 34-45.

LUN Z., Zou C., HUANG H., KALOGERAKIS E., TAN P., CANI
M.-P., ZHANG H.: Learning to group discrete graphical patterns.
ACM Trans. Graph. 36, 6 (Nov. 2017), 225:1-225:11.

MUKHOPADHYAY P., CHAUDHURI B. B.: A survey of Hough trans-
form. Pattern Recognition 48, 3 (2015), 993 — 1010.

Moscoso THOMPSON E., GERASIMOS A., MOUSTAKAS K.,
NGUYEN E. R., TRAN M., LEJEMBLE T., BARTHE L., MELLADO
N., ROMANENGO C., BIASOTTI S., FALCIDIENO B.: SHREC’19
track: Feature Curve Extraction on Triangle Meshes. In Eurograph-
ics Workshop on 3D Object Retrieval (2019), Biasotti S., LavouAl
G., Falcidieno B., Pratikakis 1., (Eds.), The Eurographics Associa-
tion.

MASSONE A., PERASSO A., CAMPI C., BELTRAMETTI M.: Pro-
file detection in medical and astronomical images by means of the
hough transform of special classes of curves. J. Math. Imaging Vis.
(2015), 296-310.

MITRA N. J., PAULY M., WAND M., CEYLAN D.: Symmetry in 3d
geometry: Extraction and applications. In EUROGRAPHICS State-
of-the-art Report (2012).

Moscoso THOMPSON E., BIASOTTI S.: Description and retrieval
of geometric patterns on surface meshes using an edge-based 1bp
approach. Pattern Recognition 82 (2018), 1 —15.

Moscoso THOMPSON E., BIASOTTI S.: Retrieving color patterns

on surface meshes using edgelbp descriptors. Computers & Graphics
79 (2019), 46 — 57.

23



[OLA14] OESAU S., LAFARGE F., ALLIEZ P.: Indoor Scene Reconstruction
using Feature Sensitive Primitive Extraction and Graph-cut. ISPRS
J. of Photogrammetry and Remote Sensing 90 (Mar. 2014), 68—82.

[Pey] PEYRE G.: Toolbox graph - A  tool-
box to  process graph and  triangulated  meshes.
http://www.ceremade.dauphine.fr/~peyre/matlab/graph/content.html.

[PT97] PIEGL L., TILLER W.: The NURBS Book (2Nd Ed.). Springer-
Verlag New York, Inc., New York, NY, USA, 1997.

[Ran81] RANDALL H.: A consideration of style in archaeology. Arizona
Anthropologist 2 (1981), 13-39.

[RES16] RODRIGUEZ ECHAVARRIA K., SONG R.: Analyzing the decorative
style of 3d heritage collections based on shape saliency. J. Comput.
Cult. Herit. 9, 4 (Dec. 2016), 20:1-20:17.

[Shi95] SHIKIN E. V.: Handbook and atlas of curves. CRC, 1995.

[STW*11] SUNKEL M., JANSEN S., WAND M., EISEMANN E., SEIDEL H.-
P.: Learning line features in 3D geometry. Computer Graphics
Forum (Proc. EUROGRAPHICS) 30, 2 (April 2011).

[STA] STARC repository. http://public.cyi.ac.cy/starcRepo/.

[Tal14] TAL A.: 3D Shape Analysis for Archaeology. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2014, pp. 50-63.

[TB14] TORRENTE M.-L., BELTRAMETTI M. C.: Almost vanishing poly-

nomials and an application to the Hough transform. J. of Algebra
and Its Applications 13, 08 (2014), 1450057.

[TBF18] TORRENTE M.-L., BIASOTTI S., FALCIDIENO B.: Recognition of
feature curves on 3D shapes using an algebraic approach to hough
transforms. Pattern Recognition 73 (2018), 111 — 130.

[TBS18] TORRENTE M., BELTRAMETTI M., SENDRA J.: r-norm bounds
and metric properties for zero loci of real analytic functions. J. of
Computational and Applied Mathematics 336 (2018), 375 — 393.

[Thel8] THE CGAL PROJECT: CGAL User and Reference Man-
ual, 4.13 ed. CGAL Editorial Board, 2018. URL:
https://doc.cgal.org/4.13/Manual/packages.html.

[Tur] Turbosquid. https://www.turbosquid.com/3d-model.

[VIS15] The Shape Repository. http://visionair.ge.imati.cnr.it/ontologies/shapes/,
2011-2015.

24



IMATI Report Series Nr. 19-01

Recent titles from the IMATI-REPORT Series:

2018

18-01: Arbitrary-order time-accurate semi-Lagrangian spectral approximations of the Vlasov-Poisson system, L. Fatone, D.
Funaro, G. Manzini.

18-02: A study on 3D shape interaction in virtual reality, E. Cordeiro, F. Giannini, M. Monti, A. Ferreira.

18-03: Standard per la gestione e procedure di validazione di dati meteo da sensori eterogenei e distribuiti, A. Clematis, B.
Bonino, A. Galizia.

18-04: Strumenti e procedure per la gestione e la visualizzazione di dati meteo prodotti da sensori eterogenei e distribuiti tramite
interfacce web basate su mappe geografiche, L. Roverelli, G. Zereik, B. Bonino, A. Gallizia, A. Clematis.

18-05: TopChart: from functions to quadrangulations, T. Sorgente, S. Biasotti, M. Livesu, M. Spagnuolo.

18-06: Adaptive sampling of enviromental variables (ASEV), S. Berretta, D. Cabiddu, S. Pittaluga, M. Mortara, M. Spagnuolo, M.
Vetuschi Zuccolini.

18-07: Multi-criteria similarity assessment for CAD assembly models retrieval, K. Lupinetti, F. Giannini, M. Monti, J,-P. Pernot.
18-08: IGA-based Multi-Index Stochastic Collocation for random PDEs on arbitrary domains, J. Beck, L. Tamellini, R. Tempone
18-09: High order VEM on curved domains, S. Bertoluzza, M. Pennacchio, D. Prada.

18-10: Estimation of the mortality rate functions from time series field data in a stage-structured demographic model for Lobesia
botrana, S. Pasquali, C. Soresina.

2019

19-01: Feature curves, Hough transform, characteristic elements, C. Romanengo, S. Biasotti, B. Falcidieno.

Istituto di Matematica Applicata e Tecnologie Informatiche ““Enrico Magenes", CNR
Via Ferrata 5/a, 27100, Pavia, Italy
Genova Section: Via dei Marini, 6, 16149 Genova, Italy * Milano Section: Via E. Bassini, 15, 20133 Milano, Italy

http://www.imati.cnr.it/



http://www.imati.cnr.it/



