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Abstract. 

 

This work is a follow-up on a previous contribution (`Convergence of sparse collocation for functions of countably 

many Gaussian random variables (with application to elliptic PDEs)' SIAM Journal of Numerical Analysis 2018), and 

contains further insights on some aspects of the solution of elliptic PDEs with lognormal diffusion coefficients 

using sparse grids. Specifically, we first focus on the choice of univariate interpolation rules, advocating the use 

of Gaussian Leja points as introduced by Narayan and Jakeman in 2014 (`Adaptive Leja sparse grid constructions 

for stochastic collocation and high-dimensional approximation', SIAM Journal on Scientific Computing) and then 

discuss the possible computational advantages of replacing the standard Karhunen-Loeve expansion of the 

diffusion coefficient with the Levy-Ciesielski expansion, motivated by theoretical work of Bachmayr, Cohen, 

DeVore, and Migliorati in 2016 (`Sparse polynomial approximation of parametric elliptic PDEs. part II: lognormal 

coefficients' ESAIM Mathematical Modelling and Numerical Analysis, 2016). 
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On Expansions and Nodes for Sparse Grid
Collocation of Lognormal Elliptic PDEs

Oliver G. Ernst, Björn Sprungk, and Lorenzo Tamellini

Abstract This work is a follow-up on a previous contribution by the same au-
thors (“Convergence of sparse collocation for functions of countably many Gaussian
random variables (with application to elliptic PDEs)” SIAM Journal of Numerical
Analysis 2018), and contains further insights on some aspects of the solution of
elliptic PDEs with lognormal diffusion coefficients using sparse grids. Specifically,
we first focus on the choice of univariate interpolation rules, advocating the use of
Gaussian Leja points as introduced by Narayan and Jakeman in 2014 (“Adaptive
Leja sparse grid constructions for stochastic collocation and high-dimensional ap-
proximation”, SIAM Journal on Scientific Computing) and then discuss the possible
computational advantages of replacing the standard Karhunen-Loève expansion of
the diffusion coefficient with the Lévy-Ciesielski expansion, motivated by theoretical
work of Bachmayr, Cohen, DeVore, and Migliorati in 2016 (“Sparse polynomial
approximation of parametric elliptic PDEs. part II: lognormal coefficients” ESAIM
Mathematical Modelling and Numerical Analysis, 2016).

1 Introduction

We consider the sparse polynomial collocation method for approximating the solution
of a random elliptic boundary value problem with lognormal diffusion coefficient,
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2 Oliver G. Ernst, Björn Sprungk, and Lorenzo Tamellini

a well-studied model problem for uncertainty quantification in numerous physical
systems such as stationary groundwater flow in an uncertain aquifer. The assump-
tion of a lognormal coefficient, i.e., that its logarithm is a Gaussian random field,
introduces challenges, e.g., for stochastic Galerkin methods [22, 17, 30] due to the
unboundedness of the coefficient and the necessity of solving large coupled linear
systems. By contrast, stochastic collocation based on sparse grids [45, 1, 34, 33]
has been established as a powerful and flexible non-intrusive approximation method
in high dimensions for functions of weighted mixed Sobolev regularity. The fact
that solutions of lognormal diffusion problems belong to this function class has
been shown under suitable assumptions in [2]. Based on the analysis in [2], we have
established in [14] a dimension-independent convergence rate for sparse polynomial
collocation given a mild condition on the univariate node sets. This condition is,
for instance, satisfied by the classical Gauss-Hermite nodes [14]. In related work,
dimension-independent convergence has also been shown for sparse grid quadrature
[10].

This work is a follow-up on our previous contribution [14] and provides further
discussion, insights and numerical results concerning two important design decisions
for sparse polynomial collocation applied to differential equations with Gaussian
random fields.

The first concerns the representation of the Gaussian random field by a series
expansion. A common choice is to use the Karhunen-Loève expansion [20] of the
random field. Although it represents the spectral, and thus optimal, expansion of the
input field, it is not necessarily the best choice for representing the solution field of the
equation. In particular, in [2, 3] the authors suggest using wavelet-based expansions
with localized basis functions. A classical example of this type is the Lévy-Ciesielski
(LC) expansion of Brownian motion or a Brownian bridge [11, 7], which employ hat
functions in place of the sine functions employed by its KL expansion. A theoretical
advantage of localized expansions of Gaussian random fields is that for these it is
easier to verify the (sufficient) condition for weighted mixed Sobolev regularity of
the solution of an associated lognormal diffusion problem. In this work, we conduct
numerical experiments with the KL and LC expansions of the Brownian bridge
used as the lognormal coefficient in an elliptic diffusion equation in order to study
their relative merits for sparse collocation of the resulting solution. We mention that
finding optimal representations of the random inputs is a topic of ongoing research,
see e.g. [8, 36, 43]. The second design decision we investigate is the choice of
the univariate polynomial interpolation sequences which form the building blocks
of sparse collocation. Established schemes are Lagrange interpolation based on
Gauss–Hermite or Genz–Keister nodes. However, the former are non-nested and the
latter grow rapidly in number and are only available up to a certain level. In recent
work, weighted Leja nodes [31] have been advocated as a suitable nested and slowly
increasing node family for sparse grid approximations, see, e.g., [26, 15, 44] for
recent applications in uncertainty quantification. However, the numerical analysis
of weighted Leja sequences on unbounded domains is just beginning, e.g., [25]. We
provide numerical evidence that also Gaussian Leja nodes, i.e., weighted Leja nodes
with Gaussian weight, satisfy the sufficient condition given in [14] for dimension-
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independent sparse polynomial collocation. Moreover, we compare the performance
of sparse grid collocation based on Gaussian Leja, Gauss–Hermite and Genz–Keister
nodes for the approximation of the solution of a lognormal random diffusion equation.

The remainder of the paper is organized as follows. In Section 2 we provide the
necessary fundamentals about lognormal diffusion problems and discuss the classical
Karhunen–Loève expansion of random fields and expansions based on wavelets.
Sparse polynomial collocation using sparse grids are introduced in Section 3 where
we also recall our convergence results from [14]. Moreover, we discuss the use of
Gaussian Leja points for quadrature and sparse grid collocation in connection with
Gaussian distributions in Section 3.2. Finally, in Section 4 we present our numerical
results for sparse polynomial collocation applied to lognormal diffusion problems
using the various univariate node families and two mentioned expansions for random
fields. We draw final conclusions in Section 5.

2 Lognormal Elliptic Partial Differential Equations

We consider a random elliptic boundary value problem on a bounded domain D⊂Rd

with smooth boundary ∂D,

−∇ · (a(ω)∇u(ω)) = f in D, u(ω) = 0 on ∂D, P-a.s. , (1)

with a random diffusion coefficient a : D×Ω → R w.r.t. an underlying probability
space (Ω ,A ,P). If a(·,ω) : D→ R satisfies the conditions of the Lax–Milgram
lemma [21] P-almost surely, then a pathwise solution u : Ω → H1

0 (D) of (1) exists.
Under suitable assumptions on the integrability of amin(ω) := ess infx∈D a(x,ω) one
can show that u belongs to a Lebesgue–Bochner space u ∈ Lp

P(Ω ;H1
0 (D)) consisting

of all random functions v : Ω →H1
0 (D) with ‖v‖Lp :=

(∫
Ω
‖v(ω)‖p

H1
0 (D)

P(dω)
)1/p

.

In this paper we consider lognormal random coefficients a, i.e., where loga : D×
Ω → R is a Gaussian random field which is uniquely determined by its mean
function φ0 : D→R, φ0(x) := E [loga(x)] and its covariance function c : D×D→R,
c(x,x′) := Cov(loga(x), loga(x′)). If the Gaussian random field loga has continuous
paths the existence of a weak solution u : Ω → H1

0 (D) can be ensured.

Proposition 1 ([9, Section 2]). Let loga in (1) be a Gaussian random field with
a(·,ω) ∈C(D) almost surely. Then a unique solution u : Ω → H1

0 (D) of (1) exists
such that u ∈ Lp

P(Ω ;H1
0 (D)) for any p > 0.

A Gaussian random field loga : D×Ω → R can be represented as a series expan-
sion of the form

loga(x,ω) = φ0(x)+ ∑
m≥1

φm(x)ξm(ω), ξm ∼ N(0,1) i.i.d., (2)
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with suitably chosen φ0,φm ∈ L∞(D). In general, several such expansions or expan-
sion bases {φm}m∈N, respectively, can be constructed, cf. Section 2.2—thus raising
the question of whether certain bases {φm}m∈N are more suited for parametrizing
random fields than others. Conversely, given an appropriate system {φm}m∈N the
construction (2) will yield a Gaussian random field if we ensure that the expansion in
(2) converges P-almost surely pointwise or in L∞(D), i.e., that the countably Gaussian
coefficient sequence (ξm)m∈N in RN with distribution µ :=

⊗
m∈NN(0,1) satisfies

µ(Γ ) = 1 where Γ := {ξξξ ∈ RN : ‖
∞

∑
m=1

φmξm‖L∞(D) < ∞}. (3)

We remark that Γ is a linear subspace of RN. The basic condition (3) is satisfied, for
instance, if

∑
m≥1
‖φm‖L∞(D) < ∞ (4)

and (2) then yields a Gaussian random variable in L∞(D), see [39, Lemma 2.28] or
[40, Section 2.2.1]. Given the assumption (3) we can view the random function a
in (2) and the resulting pathwise solution u of (1) as functions in L∞(D) and H1

0 (D),
respectively, depending on the random parameter ξξξ ∈ Γ , i.e., a : Γ → L∞(D) and
u : Γ →H1

0 (D). In particular, by the Lax–Milgram lemma we have that u(ξξξ )∈H1
0 (D)

is well-defined for ξξξ ∈ Γ and

‖u(ξξξ )‖H1
0 (D) ≤

CD

amin(ξξξ )
‖ f‖L2(D), amin(ξξξ ) := ess inf

x∈D
a(x,ξξξ ).

In the following subsection we provide sufficient conditions on the series representa-
tion in (2) such that (3) holds and that the solution u : Γ → H1

0 (D) of (1) belongs to
a Lebesgue–Bochner space Lp

µ(Γ ;H1
0 (D)). Moreover, we discuss the regularity of

the solution u of the random PDE (1) as a function of the variable ξξξ ∈ Γ which then
allows for efficient approximations by polynomials in ξξξ .

2.1 Integrability and Regularity of the Solution

A first result concerning the integrability of u given loga as in (2) is the following.

Proposition 2 ([39, Proposition 2.34]). If the functions φm, m ∈N, in (2) satisfy (4),
then (3) holds and the solution u : Γ → H1

0 (D) of (1) with diffusion coefficient a as
in (2) satisfies u ∈ Lp

µ(Γ ;H1
0 (D)) for any p > 0.

In [2, Corollary 2.1] the authors establish the same statements as in Proposition 2 but
under the assumption that there exists a strictly positive sequence (τm)m∈N such that

sup
x∈D

∑
m≥1

τm|φm(x)|< ∞, ∑
m≥1

exp(−τ
2
m)< ∞. (5)
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Compared with (4), this relaxes the summability condition if the functions φm have
local support. On the other hand, (5) implies that (|φm(x)|)m∈N decays slightly faster
than a general `1(N)-sequence due to the required growth of τm ≥C

√
logm.

However, the authors of [2] show even more, namely, a particular weighted
Sobolev regularity of the solution u : Γ → H1

0 (D) of (1) w.r.t. ξξξ or ξm, respectively,
assuming a stronger version of (5). To state their result, we introduce further notation.
First, we define the partial derivative ∂ξmv(ξξξ ) for a function v : Γ → H1

0 (D) by

∂ξmv(ξξξ ) := lim
h→0

v(ξξξ +hem)− v(ξξξ )
h

,

assuming its existence, where em denotes the m-th unit vector in RN. Higher deriva-
tives ∂ k

ξm
v(ξξξ ) are defined inductively. Thus, for any k∈Nwe have ∂ k

ξm
v : Γ →H1

0 (D),
given its existence on Γ . In order to denote arbitrary mixed derivatives we introduce
the set

F :=
{

k ∈ NN0 : |k|0 < ∞

}
, |k|0 := |{m ∈ N : km > 0}|, (6)

of finitely supported multi-index sequences k ∈ NN0 . For k ∈F we can then define
the partial derivative ∂ kv : Γ → H1

0 (D) of a function v : Γ → H1
0 (D) by

∂
kv(ξξξ ) :=

(
∏
m≥1

∂
km
ξm

)
v(ξξξ ),

where the product is, in fact, finite due to the definition of F .

Remark 1. It was shown in [2] that the partial derivative ∂ ku(ξξξ ) ∈ H1
0 (D), k ∈F ,

of the solution u of (1) can itself be characterized by a variational problem in H1
0 (D):∫

D
a(ξξξ )∇[∂ ku(ξξξ )] ·∇v dx =

∫
D

∑
i�k

(
k
i

)
φ

k−ia(ξξξ )∇[∂ iu(ξξξ )] ·∇v dx ∀v ∈ H1
0 (D)

where i� k denotes that im ≤ km for all m∈N but i 6= k and φ i, i∈F , is a shorthand
notation for the finite product ∏m≥1 φ im

m ∈ L∞(D).

We now state the regularity result in [2] which uses a slightly stronger assumption
that (5).

Theorem 1 ([2, Theorem 4.2]). Let r ∈N and let there exist strictly positive weights
τm > 0, m ∈ N such that for the functions φm, m ∈ N, in (2) and for a p > 0 we have

sup
x∈D

∑
m≥1

τm|φm(x)|<
log2√

r ∑
m≥1

τ
−p
m < ∞. (7)

Then the solution u : Γ → H1
0 (D) of (1) with coefficient a as in (2) satisfies
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∑
k∈F ,
|k|∞≤r

τττ2k

k!
‖∂ ku‖2

L2
µ

< ∞, where τττ
k = ∏

m≥1
τ

km
m and k! = ∏

m≥1
km! . (8)

This theorem tells us that, given (7), the partial derivatives ∂ ku : Γ → H1
0 (D) exist

for any k ∈F with |k|∞ < ∞ and belong to L2
µ(Γ ;H1

0 (D)). Moreover, their L2
µ -norm

decays faster than τττ−2k—otherwise (8) would not hold. In particular, Theorem 1
establishes a weighted mixed Sobolev regularity of the solution u : Γ → H1

0 (D) of
maximal degree r ∈ N and with increasing weights τm ≥ Cm1/p. As it turns out,
it is such a regularity which ensures dimension-independent convergence rates for
polynomial sparse grid collocation approximations—see the next section.

Moreover, the condition (7) seems to favor localized basis functions φm for which
∑

∞
m=1 τm|φm(x)| reduces to a summation over a subsequence ∑

∞
k=1 τmk |φmk(x)| such

that (7) is easier to verify. In view of this, the authors of [2, 3] proposed using wavelet-
based expansions for Gaussian random fields with sufficiently localized φm in place
of the globally supported eigenmodes φm in the Karhunen–Loève (KL) expansion.
In fact, condition (7) fails to hold for the KL expansion of some rough Gaussian
processes (Example 1 below), but can be established if the process is sufficiently
smooth (Example 2). We will discuss KL and wavelet-based expansions of Gaussian
processes in more detail in the next subsection.

2.2 Choice of Expansion Bases

Given a Gaussian random field loga : D×Ω →R with mean φ0 : D→R and covari-
ance c : D×D→ R we seek a representation as an expansion (2). We explain in the
following how such expansions can be derived in general. To this end, we assume
that the random field has P-almost surely continuous paths, i.e., loga : Ω →C(D),
and a continuous covariance function c ∈C(D×D). Thus, we can view loga also
as a Gaussian random variable with values in the separable Banach space C(D) or,
by continuous embedding, with values in the separable Hilbert space L2(D). The
covariance operator C : L2(D)→ L2(D) of the random variable loga : Ω → L2(D) is
then given by (C f )(x) :=

∫
D c(x,y) f (y) dy. This operator is trace class and induces

a dense subspace HC := range C1/2 ⊂ L2(D), which equipped with the inner product
〈u,v〉C := 〈C−1/2u,C−1/2v〉L2(D), forms again a Hilbert space, called the Cameron–
Martin space (CMS) of loga. The CMS plays a crucial role for series representations
(2) of loga. Specifically, it is shown in [28] that (2) holds almost surely in C(D) if
and only if the system {φm}m∈N is a so-called Parseval frame or (super) tight frame
in the CMS of loga, i.e., if {φm}m∈N ⊂HC and

∑
m≥1
|〈φm, f 〉C|2 = ‖ f‖2

C ∀ f ∈HC.

We discuss two common choices for such frames in the following.
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Karhunen–Loève expansions.

This expansion is based on the eigensystem (λm,ψm)m∈N of the compact and self-
adjoint covariance operator C : L2(D)→ L2(D) of loga. Thus, let ψm ∈ L2(D) satisfy
Cψm = λmψm with λm > 0. Since c ∈C(D×D) we have ψm ∈C(D) and (2) holds
almost surely in C(D) with φm := λ

−1/2
m ψm, because {φm}m∈N ⊂HC is a complete

orthonormal system (CONS) of HC. In fact, the KL basis {φm}m∈N represents the
only CONS of HC which is also L2(D)-orthogonal. In addition, as the spectral
expansion of loga in L2

P(L
2(D)), it is the optimal basis in this space in the sense that

the truncation error after M terms ‖ loga−φ0−∑
M
m=1 φmξm‖L2

P(L
2(D)) is the smallest

among all truncated expansions of length M of the form

loga(x,ω) = φ0(x)+
M

∑
m=1

φ̃m(x)ξ̃m(ω).

Under additional assumptions the KL expansion also yields optimal rates of the
truncation error in L2

P(C(D)), see again [28]. However, the KL modes φm typically
have global support on D which makes it often hard to verify a condition like (7).
Nonetheless, for particular covariance functions such as the Matérn kernels bounds
on the norms ‖φm‖L∞(D) are known, see, e.g., [23].

Wavelet-based expansions.

Another kind of expansions are based on orthonormal wavelet bases {ψm}m∈N of
L2(D). Given a factorization C = SS∗, S : L2(D)→ L2(D), of the covariance operator
C (e.g., S = S∗ = C1/2), we can set φm := Sψm and obtain a CONS {φm}m∈N of
the CMS HC, see [28]. Thus, (2) holds almost surely in C(D) with φm = Sψm.
The advantage of wavelet-based expansions is that the resulting φm often inherit
the localized behavior of the underlying ψm, cf. Example 1, which then facilitates
verification of the sufficient condition (7) for the weighted Sobolev regularity of the
solution u of (1). For instance, we refer to [3] for Meyer wavelet-based expansions of
Gaussian random fields with Matérn covariance functions satisfying (7). There, the
authors use a periodization approach and construct the φm via their Fourier transforms.
Further work on constructing and analyzing wavelet-based expansions of Gaussian
random fields includes, e.g., [13, 12, 6].

Example 1 (Brownian bridge). A simple but useful example is the standard Brownian
bridge B : D×Ω → R on D = [0,1]. This is a Gaussian process with mean φ0 ≡ 0
and covariance function c(x,x′) = min(x,x′)− xx′. The associated CMS is given by
HC = H1

0 (D) with 〈u,v〉C = 〈∇u,∇v〉L2(D) and we have C = SS∗ with

S f (x) :=
∫ 1

0

(
1[0,x](y)− x

)
f (y)dy, f ∈ L2(D).

The KL expansion of the Brownian bridge is given by
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B(x,ω) = ∑
m≥1

√
2

πm
sin(πmx)ξ (ω), ξm ∼ N(0,1) i.i.d. , (9)

i.e., we have φm(x) =
√

2
πm sin(πmx) and ‖φm‖L∞(D) =

√
2

πm . Although the φm do not
satisfy the assumptions of Proposition 2, existence and integrability of the solution
u of (1) for loga = B is guaranteed by Proposition 1, since B has almost surely
continuous paths. Concerning the condition (7) it can be shown that ∑m≥1 τm|φm(x)|
converges pointwise to a (discontinuous) function if τm ∈ o(m−1), i.e., (τ−1

m )m∈N ∈
`p(N) only for a p > 1, see the Appendix. However, this function turns out to be
unbounded in a neighborhood of x = 0 if (τ−1

m )m∈N ∈ `p(N) for p≤ 2 and numerical
evidence suggests that it is also unbounded if (τ−1

m )m∈N ∈ `p(N) for p > 2, again see
the Appendix. Thus, the KL expansion of the Brownian bridge does not satisfy the
conditions of Theorem 1 for the weighted Sobolev regularity of u : Γ → H1

0 (D).
Another classical series expansion of the Brownian bridge is the Lévy–Ciesielski

(LC) expansion [11]. This wavelet-based expansions uses the Haar wavelets ψm(x) =
2`/2ψ(2`x− j) where ψ(x) = 1[0,1/2](x)−1(1/2,1](x) is the mother wavelet and m =

2`+ j for level ` ≥ 0 and shift j = 0, . . . ,2`− 1. Since the Haar wavelets form a
CONS of L2(D) we obtain a Parseval frame of the CMS of the Brownian bridge by
taking φm = Sψm, which yields a Schauder basis consisting of the hat functions

φm(x) := 2−`/2
φ(2`x− j), φ(x) := max(0,1−|2x−1|), m = 2`+ j, (10)

with j = 0, . . . ,2`−1 and `≥ 0. Hence, for loga=B the series representation (2) also
holds almost surely in C(D)with φm as in (10), see also [7, Section IX.1]. Moreover,
we have ‖φm‖L∞ = 2−blog2 mc/2, resulting in ∑m≥1 ‖φm‖L∞ = ∞. On the other hand,
due to the localization of the φm we have for any fixed x ∈ D and each level `≥ 0
there exists only one k` ∈ {0, . . . ,2`−1} such that φ2`+k`(x) 6= 0. In particular, it can
be shown that the LC expansion of the Brownian bridge satisfies the conditions of
Theorem 1 for any p > 2, since for τm = κblog2 mc with |κ|<

√
2 we get

∑
m≥1

κ
blog2 mc|φm(x)|= ∑

l≥0
κ
`/2|φ2`+k`(x)| ≤∑

l≥0
(
√

0.5ρ)` < ∞

and for p > logκ 2 > 2

∑
m≥1

τ
−p
m = ∑

l≥0
2l

κ
−`p = ∑

l≥0

(
2κ
−p)` < ∞.

Example 2 (Smoothed Brownian bridge). Based on the explicit KL expansion of the
Brownian bridge we can construct Gaussian random fields with smoother realizations
by

Bq(x,ω) = ∑
m≥1

√
2

(πm)q sin(πmx)ξ (ω), ξm ∼ N(0,1) i.i.d. , q > 1. (11)
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Now, the resulting φm =
√

2
(πm)q sin(πm·) indeed satisfy the assumptions of Proposition

2 for any q > 1, since ‖φm‖L∞(D) ∝ m−q. Moreover, for p > 1
q−1 the expansion

(11) satisfies the assumptions of Theorem 1 with τm = m(1+ε)/p for sufficiently
small ε . For this Gaussian random field Bq the covariance function is given by
c(x,y) = 2∑m≥1(πm)−2q sin(πmx)sin(πmy) and we can express C1/2 via

C1/2 f (x) =
∫

D
k(x,y) f (y) dy, k(x,y) = 2 ∑

m≥1
(πm)−q sin(πmx)sin(πmy).

Thus, we could construct alternative expansion bases for Bq via φm =C1/2ψm given
a wavelet CONS {ψm}m∈N of L2(D). However, in this case the resulting φm do not
necessarily have a localized support. For instance, when taking Haar wavelets ψm
the C1/2ψm have global support in D = [0,1], see Fig. 1.
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Fig. 1: Expansion functions resulting from applying C1/2 as in Example 2 for q = 3
to the Haar wavelets ψm, m = 2`+ k, with level ` ∈ {−1,0,1} (left), `= 2 (middle),
and `= 3 (right).

3 Sparse Grid Approximation

In [14] we presented a solution approach for solving random elliptic PDEs based
on sparse polynomial collocation derived from tensorized interpolation at Gauss-
Hermite nodes. The problem is cast as that of approximating the solution u of (1) as
a function u : Γ →H1

0 (D) by solving for realizations of u associated with judiciously
chosen collocation points {ξξξ j}N

j=1 ⊂ Γ .
Sparse polynomial collocation operators are constructed from tensorized Lagrange

interpolation sequences (Uk)k∈N0 defined as

(Uk f )(ξ ) =
k

∑
i=0

f (ξ (k)
i )L(k)

i (ξ ), f : R→ R, (12)
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where {L(k)
i }k

i=0 denote the Lagrange fundamental polynomials of degree k associated
with a set of k+1 distinct interpolation nodes Ξ (k) := {ξ (k)

0 ,ξ
(k)
1 , . . . ,ξ

(k)
k } ⊂ R and

L0 ≡ 1. For any k ∈F (cf. (6)), the associated tensorized Lagrange interpolation
operator Uk :=

⊗
m∈NUkm is given by

(Uk f )(ξξξ ) =

(⊗
m∈N

Ukm f

)
(ξξξ ) = ∑

i≤k
f (ξξξ (k)

i )L(k)
i (ξξξ ), f : RN→ R, (13)

in terms of the tensorized Lagrange fundamental polynomials L(k)
i (ξξξ ) :=∏m∈NL(km)

im (ξm)

with multivariate interpolation nodes ξξξ
(k)
i ∈ Ξ (k) :=×m∈NΞ (km). We thus have

Uk : RΓ →Qk, where

Qk := span{ξξξ i : 0≤ im ≤ km,m ∈ N}, k ∈F ,

denotes the multivariate tensor-product polynomial space of maximal degree km in
the m-th variable in the countable set of variables ξξξ = (ξm) ∈ RN.

Sparse polynomial spaces can be constructed by tensorizing the univariate detail
operators

∆k :=Uk−Uk−1, k ≥ 0, U−1 :≡ 0, (14)

giving
∆k :=

⊗
m∈N

∆km : RΓ →Qk.

A sparse polynomial collocation operator is then obtained by fixing a suitable set of
multi-indices Λ ⊂F and setting

UΛ := ∑
i∈Λ

∆i : RΓ →PΛ , where PΛ := ∑
i∈Λ

Qi. (15)

It is shown in [14] that if Λ is finite and monotone, meaning that any j∈F for which
j≤ i (componentwise) for i ∈Λ also belongs to Λ , then UΛ is the identity on PΛ

and ∆i vanishes on PΛ for any i 6∈Λ .
The construction of UΛ f for f : Γ → R consists of a linear combination of tensor

product interpolation operators requiring the evaluation of f at certain multivariate
nodes. It can be shown that for i ∈F the detail operators have the representation

∆i f =
[⊗

m≥1

(Uim −Uim−1)
]

f = ∑
i−111≤k≤i

(−1)|i−k|1
[⊗

m≥1

Ukm

]
f ,

leading to an alternative representation of UΛ for monotone finite subsets Λ ⊂F
known as the combination technique:

UΛ = ∑
i∈Λ

c(i;Λ)Ui, c(i;Λ) := ∑
e∈{0,1}N : i+e∈Λ

(−1)|e|1 . (16)
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We refer to the collection of nodes appearing in the tensor product interpolants Ui as
the sparse grid ΞΛ ⊂ Γ associated with Λ :

ΞΛ =
⋃
i∈Λ

Ξ
(i). (17)

In the same way, when approximating the solution u : Γ → H1
0 (D) of (1) by u(ξξξ )≈

(UΛ u)(ξξξ ), each evaluation u(ξξξ j) at a sparse grid point ξξξ j ∈ ΞΛ represents the
solution of the PDE for the coefficient a = a(ξξξ j).

Remark 2. 1. The univariate interpolation operators Uk in (12), on which the sparse
collocation construction is based, will have degree of exactness k, as the asso-
ciated sets of interpolation nodes Ξ (k) have cardinality k+1. Although we do
not consider this here, allowing nodal sets to grow faster than this may bring
some advantages. Such an example is the sequence of Clenshaw–Curtis nodes
(cf. [34]), for which |Ξ (0)|= 1 and |Ξ (k)|= 1+2k.

2. The Clenshaw–Curtis doubling scheme has the advantage of generating nested
node sets Ξ (k+1) ⊂ Ξ (k). This has the advantage that higher order collocation
approximations may re-use function evaluations of previously computed lower-
order approximations. Moreover, it was shown in [5] that sparse collocation
based on nested node sequences are interpolatory. By contrast, the sequence of
Gauss–Hermite nodes with |Ξ (k)|= k+1 results in disjoint consecutive nodal
sets. The number of new nodes added by each consecutive set is referred to as
the granularity of the node sequence.

3. Two heuristic approaches for constructing monotone multi-index sets Λ for
sparse polynomial collocation for lognormal random diffusion equations are
presented in [14]. Further details are given in Section 4.

In [14], a convergence theory for sparse polynomial collocation approximations
f ≈UΛ f of functions in f ∈ L2

µ(Γ ,H1
0 (D)) was given based on the expansion

f (ξξξ ) = ∑
k∈F

fk Hk(ξξξ ), fk =
∫

Γ

f (ξξξ )Hk(ξξξ )µ(dξξξ ),

in tensorized Hermite polynomials Hk(ξξξ ) = ∏m∈NHkm(ξm), k ∈F , with Hkm denot-
ing the univariate Hermite orthogonal polynomial of degree km, which are known to
form an orthonormal basis of L2

µ(Γ ;H1
0 (D)).

Under assumptions to be detailed below, it was shown [14, Theorem 3.12] that
there exists a nested sequence of monotone multi-index sets ΛN ⊂F , where N =
|ΛN |, such that the sparse collocation error of the approximation UΛN f satisfies

∥∥ f −UΛN f
∥∥

L2
µ
≤C(1+N)

−
(

1
p−

1
2

)
, (18)

for certain values of p ∈ (0,2) with a constant C. The precise assumptions under
which (18) was shown to hold are as follows:

(1) The condition µ(Γ ) = 1 on the domain of f (cf. (3)).
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(2) An assumption of weighted L2
µ -summability on the derivatives of f : specifically,

there exists r ∈ N0 and a sequence of positive numbers (τ−1
m )m∈N ∈ `p(N),

p ∈ (0,2), such that ∂ k f ∈ L2
µ(RN;H1

0 (D)) for all k ∈ F with |k|∞ ≤ r and
relation (8) holds.

(3) An assumption on the univariate sequence of interpolation nodes: there exist
constants θ ≥ 0 and c≥ 1 such that the univariate detail operators (14) satisfy

max
i∈N0
‖∆iHk‖L2

µ
≤ (1+ ck)θ , k ∈ N0. (19)

In order that (18) hold, it is sufficient that (8) be satisfied for r > 2(θ + 1)+ 2
p . It

was shown in [14, Lemma 3.13] that (19) holds with θ = 1 for the detail operators
∆k = Uk−Uk−1 associated with univariate Lagrange interpolation operators Uk at
Gauss-Hermite nodes, i.e., the zeros of the univariate Hermite polynomial of degree
k+1.

3.1 Gaussian Leja Nodes

Leja points for interpolation on a bounded interval I ⊂ R are defined recursively by
fixing an arbitrary initial point ξ0 ∈ I and setting

ξk+1 := argmax
ξ∈I

k

∏
i=1
|ξ −ξi|, k ∈ N0. (20)

They are seen to be nested, possessing the lowest possible granularity and have been
shown to have an asymptotically optimal distribution [38, Chapter 5]. The quantity
maximized in the extremal problem (20) is not finite for unbounded sets I, which
arise, e.g., when an interpolation problem is posed on the entire real line. Such
is the case with parameter variables ξm which follow a Gaussian distribution. By
adding a weight function vanishing at infinity faster than polynomials grow, one can
generalize the Leja construction to unbounded domains (cf. [27]). Different ways of
incorporating weights in (20) have also been proposed in the bounded case, cf. e.g.
[38, p. 258], [4], and [29]. In [31], it was shown that for weighted Leja sequences
generated on unbounded intervals I by solving the extremal problem

ξk+1 = argmax
ξ∈I

√
ρ(ξ )

k

∏
i=0
|ξ −ξi|, (21)

where ρ is a probability density function on I, their asymptotic distribution coincides
with the probability distribution associated with ρ . This is shown in [31] for the
generalized Hermite, generalized Laguerre and Jacobi weights, corresponding to a
generalized Gaussian, Gamma and Beta distributions. Subsequently, the result of
[42] on the subexponential growth of the Lebesgue constant of bounded unweighted
Leja sequences was generalized to the unbounded weighted case in [25].
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If we choose ρ(ξ ) = exp(−ξ 2/2) and I = R in (21) and set ξ0 = 0, then we
shall refer to the resulting weighted Leja nodes also Gaussian Leja nodes in view
of their asymptotic distribution. Unfortunately, the result in [25] does not imply a
bound like (19) for univariate interpolation using Gaussian Leja nodes. However,
we provide numerical evidence in Figure 2 suggesting that (19) is also satisfied for
Gaussian Leja nodes with θ = 1. In the next subsection we compare the performance
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Fig. 2: Comparison of maxi ‖∆iHk‖L2
µ
,

k = 1, . . . ,39, for Gauss–Hermite and
Gaussian Leja nodes.

of Gaussian Leja nodes for quadrature and interpolation purposes to Gauss–Hermite
and Genz–Keister nodes [18] which represent another common univariate node
family for quadrature w.r.t. a Gaussian weight. Although, a comparison of Gaussian
Leja with Genz–Keister points is already available in [31] and a comparison between
Gauss–Hermite and Genz–Keister is reported in [32, 10], the joint comparison of the
three choices was never reported in literature to the best of our knowledge.

3.2 Performance Comparison of Common Univariate Nodes

In this section we investigate the performance and convergence of numerical quadra-
ture and interpolation of uni- and bivariate functions using either Gauss–Hermite,
Genz–Keister or Gaussian Leja nodes. The quadrature is applied to a standard (mul-
tivariate) Gaussian measure µ and the interpolation error is measured in L2

µ . We
consider the bivariate case to be a good proxy for the general multivariate case; a full
investigation of the multivariate case exceeds the scope of this paper. The functions
we consider in this section were previously proposed in [41] for the purpose of
comparing univariate quadrature with Gauss–Hermite and Genz–Keister points and
are displayed in the figures displaying the results.

Quadrature results are reported in Figures 3 (univariate case) and 4 (multivariate
case). In the univariate case, Gauss–Hermite nodes are the best performing, and Genz–
Keister nodes also show a good performance, which is not surprising given that they
are constructed as nested extension of the Gauss–Hermite points with maximal
degree of exactness. The Gaussian Leja nodes, by comparison, perform poorly. This
should not surprise, however, given that Gaussian Leja points are determined by
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minimizing Lebesgue constants, i.e., they are conceived as interpolation points rather
than quadrature points.

In the bivariate case, however, the situation changes and Gauss–Hermite nodes
are the worst performing, due to their non-nestedness which tends to introduce
unnecessary quadrature nodes into the quadrature scheme. Note that in this case we
are simply using the standard Smolyak sparse multi-index set in M dimensions in
Equation (15),

Λw =

{
i ∈ NM :

M

∑
m=1

im ≤ w
}
, for some w ∈ N,

i.e., we are not tailoring the sparse grid either to the function to be integrated nor to
the univariate points. The Gaussian Leja points show a faster decay of the quadrature
error, i.e., the nestedness and granularity features pay off even if the univariate
performance is not excellent. It is finally worth mentioning that despite that Genz–
Keister performance is equivalent to that of Gaussian Leja, their most significant
drawback is that the computation of Genz–Keister nodes is less straightforward than
for Gaussian Leja (it might even happen that a subsequent Genz–Keister quadrature
level fails to exist, i.e., there is no Genz–Keister quadrature formula that nests onto
a given Genz–Keister formula and has real quadrature weights [18]). Moreover,
Genz–Keister nodes are significantly less granular: indeed, the cardinalities of the
univariate Genz–Keister node sets are |Ξ (k)| = 1,3,9,19,35 for k = 0, . . . ,4. In
particular, the plot reports the largest standard sparse grid that can be built with
these rules before running out of tabulated Genz–Keister points. The considerations
discussed in this paragraph for bivariate quadrature are expected to hold true also
for high-dimensional integration. Next, we turn to interpolation performance, where
Gaussian Leja nodes are expected to be best (or close-to-best) performing, given
their specific design. Measuring interpolation error on unbounded domains with
a Gaussian measure (or any non-uniform measure for that matter) is a delicate
task, as one would need to choose a proper weight to ensure boundedness of the
pointwise error, see e.g. [24, 32]. In this contribution, we actually discuss the L2

µ

approximation error of the interpolant, that we compute as follows: we sample K
independent batches of M-variate Gaussian random variables, with P points each,
Bk = {ξξξ i}P

i=1,ξi,m ∼N(0,1),m = 1, . . . ,M,k = 1, . . . ,K; we construct a sequence of
increasingly accurate sparse grids UΛw [ f ] and evaluate them on each random batch;
we then approximate the L2

µ error for each sparse grid on each batch by Monte Carlo,

Errk(UΛw [ f ]) =
1
P

P

∑
i=1

( f (ξξξ i)−UΛw [ f ](ξξξ i))
2

and then we show the convergence of the median value of the L2
µ error for each sparse

grid over the K repetitions.1 The univariate and bivariate results are reported in Figure

1 Changing the median value with the mean value does not change significantly the plots, which
means that the errors are distributed symmetrically around the median. We do not report here these
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Fig. 4: Results for multivariate quadrature test.

5 and 6, respectively. The plots indicate that Gaussian Leja nodes perform similarly
to Gauss–Hermite nodes in the univariate case (being as already mentioned designed
for interpolation), and much better than Gauss–Hermite nodes in the multivariate
case, due to the nestedness; the convergence curves are indeed much closer in the
multivariate case if the error is plotted against the number of multi-indices in the
sparse grid rather than the number of points (not shown for brevity). Genz–Keister
point performance is still good in 1D (even though they are designed for quadrature
rather than interpolation), but they suffer in the multivariate case due to the limited
number of tabulated points.

4 Numerical Results

We now perform numerical tests solving the elliptic PDE introduced in Section 2,
with the aim of extending the numerical evidence obtained in [14]. In that paper, we
assessed:

plots for brevity. We have also checked that the distribution of the errors is not too spread, by adding
boxplots to the convergence lines. Again, we do not show these plots for brevity. Finally, observe
that we could have also employed a sparse grid to compute the L2

µ error, but we choose Monte Carlo
quadrature to minimize the chance that the result depend on the specific grid employed.
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Fig. 5: L2
µ error for univariate interpolation. The results have been produced with

K = 30 repetitions, each with P = 100 samples.
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Fig. 6: L2
µ error for multivariate interpolation. The results were produced with K = 50

repetitions, each with P = 500 samples.

• the sharpness of the predicted rate for the a-priori sparse grids construction (both
with respect to the number of indices in the set and the number of points in the
sparse grids);

• the comparison in performance of the a-priori and the classical dimension-
adaptive a-posteriori sparse grids constructions;

limiting ourselves to using Gauss–Hermite collocation points, which were covered by
out theory. The findings indicated that, while our predicted rates are a bit suboptimal,
the a-priori construction is actually competitive with the a-posteriori adaptive variant,
especially if one considers the extra PDE solves needed to explore the set of multi-
indices. We remark in particular that we observed convergence of the sparse grid
approximations even in cases in which the theory predicted no convergence (albeit
with a rather poor convergence rate, comparable to that attainable with Monte Carlo
or Quasi Monte Carlo methods—see also [32, 35] for possible remedies).

In this contribution our goal is numerical investigation of a number of additional
questions that remain unanswered by theory. In particular, we wish to investigate:

1. whether using the Gaussian Leja or Genz–Keister nodes yields improvement
over the Gauss–Hermite nodes in our framework, see Section 4.1;
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Fig. 7: 30 realizations of the random field for different values of q. Left: q = 3; center:
q = 1.5; right: q = 1. Note the different scaling of the vertical axis.

2. whether changing the random field representation from Karhunen-Loève (KL)
to Lévy-Ciesielski (LC) expansion for the case q = 1 (pure Brownian bridge)
improves the efficiency of the numerical computations, see Section 4.2. As
explained above, this is motivated by the fact that LC expansion of the random
field allowed [2] to prove convergence of the best-N-term approximation of the
lognormal problem over Hermite polynomials.

The tests have been performed using the Sparse Grids Matlab Kit, v.18-10
“Esperanza”, which can be downloaded under the BSD2 license at https://
sites.google.com/view/sparse-grids-kit. We briefly recall the ba-
sic approaches of the two heuristics employed for constructing the multi-index sets
Λ . We refer to [14] for the full details of the two algorithms. The first is the classical
dimension-adaptive algorithm introduced by Gerstner and Griebel in [19] with some
suitable modifications to make it work with non-nested quadrature rules and for
quadrature/interpolation on unbounded domains. It is driven by a posteriori error
indicators computed along the outer margin of the current multi-index set. The mech-
anism by which new random variables are activated in the multi-index set uses a
“buffer” of fixed size containing variables whose error indicators have been computed
but not yet selected. The second approach is an a-priori tailored choice of multi-index
set Λ , which can be derived from the study of the decay of the spectral coefficients
of the solution.

We thus consider the problem in equation (1) with f = 1. We set the pointwise
standard deviation of loga as σ = 3; note that this constant does not appear explicitly
in the expression for loga in Section 2, i.e., it has been absorbed in φm. Figure 7
shows 30 realizations for the random field a(ω) for different values of q, obtained by
truncating the Karhunen-Loève expansion of a(ω) at M = 1000 random variables.
Specifically, we consider a smoothed Brownian bridge as in Example 2, with q =
3, 1.5, 1, cf. Eq. (11); for these values of q a truncation at 1000 random variables
covers 100%, 99.99996% and 99.93% of the total variance of loga, respectively.
The plot shows how the realizations grow increasingly rough as q decreases. Upon
plotting the corresponding PDE solutions (not displayed for brevity) one would
instead see that solutions are much less rough, even in the case q = 1.
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Fig. 8: Comparison of performance for Gaussian Leja, Genz–Keister, and Gauss–
Hermite points for different test cases and different sets of multi-indices. The plots
report error versus number of points.
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Fig. 9: Top row: further analysis of influence of counting strategies in assessing the
performance of Gaussian Leja, Genz–Keister, and Gauss–Hermite points. Bottom
row: plot of error versus number of indices in the sparse grid set for different test
cases.

4.1 Gauss–Hermite vs. Gaussian Leja vs. Genz–Keister nodes

We begin the analysis by the comparison of the performance of Gauss–Hermite,
Gaussian Leja, and Genz–Keister points. To this end, we consider random fields
of different smoothness, we choose an expansion (KL/LC) for each random field
considered, and we compute the sparse grid approximation of u with the a-priori
and a-posteriori dimension-adaptive sparse grid algorithm, with Gauss–Hermite,
Gaussian Leja and Genz–Keister points (i.e., 6 runs per choice of random field and
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associated expansion). Specifically, we consider three different random fields, i.e., a
KL expansion of the smoothed Brownian bridge with q = 3, and a standard Brownian
bridge (q = 1) expanded with either KL or LC expansion, cf. again Examples 1
and 2. We compute the error in the full L2

µ(Γ ;H1
0 (D)) norm again with a Monte

Carlo sampling over 1000 samples of the random field, which has been verified
to be enough precise for our purposes. These samples are generated considering a
“reference truncation level” of the random field with 1000 random variables, which
substantially exceeds the number of random variables active during the execution of
the algorithms (which never considers more than a few hundred random variables).
In the first set of results, we report the convergence of the error with respect to the
number of points in the grid. The counting of the points is a subtle issue can be done
in various ways. Here, we consider the following different counting strategies:

“incremental”: the number of points in the sparse grid ΞΛ as defined in (17), i.e.,
the points required to compute the application of UΛ as given in (15),

“combitec”: the number of points necessary for the combination technique repre-
sentation of UΛ in (16); since c(i;Λ) may be zero for some i ∈ Λ , we can omit
the corresponding Ui in (16) and consider the possibly smaller combitec sparse
grid Ξ ct

Λ
:=
⋃

i∈Λ : c(i;Λ)6=0 Ξ (i).

These strategies exhaust the counting strategies for the a-priori construction; note
that these two counting schemes yield different values for non-nested points (such as
Gauss–Hermite), while they are identical for nested points (such as Gaussian Leja
and Genz–Keister). For the a-posteriori construction, one should also further decide
whether to apply these counting strategies including or excluding the indices in the
margin of the current set (“I-set” and ”G-set” in the legend, respectively).

Results are reported in Figures 8 and 9. Throughout this section, we use the
following abbreviations in the legend of convergence plots: GH for Gauss–Hermite,
LJ for Gaussian Leja, GK for Genz–Keister. Figure 8 compares the performance
of the three choices of points for the three choices of random fields and the six
sparse grids constructions mentioned earlier, in terms of L2

µ error vs. number of
collocation points. The results for Gauss–Hermite points are reported in line with
filled markers, those for Gaussian Leja points are in lines with empty markers, and
those for Genz–Keister in dashed lines with filled markers with black edges. Different
colors identify different combination of grids constructions and counting (blue for
a-priori-incremental; red for a-posteriori-I-set-incremental; gray for a-posteriori-G-
set-incremental). The first and foremost observation to be made is that the Gaussian
Leja performance is consistently better than Genz–Keister and Gauss–Hermite across
algorithms (a-priori/a-posteriori) and test cases, while Gauss–Hermite and Genz–
Keister performance is essentially identical, in agreement with what reported e.g.
in [32, 10]. Only the Genz–Keister performance for the a-priori construction in the
case q = 3 is surprisingly good; we don’t have any explanation for this, and leave it
to future research. Secondly, we observe that the a-priori algorithm performs worse
than the a-posteriori for q = 3 (both considering the “G-set” and the “I-set”), while
the opposite is true for q = 1, if one considers the a-posteriori “G-set” (regardless
of KL/LC type of expansion), which is actually the most representative of the full
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computational cost of the a-posteriori algorithm. This is in agreement with the
findings reported in [14] and not surprising, given that in the case q = 1 features
a larger number of random variables and therefore is harder to be handled by the
a-posteriori algorithm.

In Figure 9 we dig a bit deeper in the analysis of the relatively poor performance
of Gauss–Hermite points. In the top row we want to investigate whether the “incre-
mental”/“combitec” counting (which we recall produces different results only for
Gauss–Hermite points) explains at least partially the gap between the Gauss–Hermite
and the Gaussian Leja results in Figure 8. To this end, we focus on the a-posteriori
“I-set”, which can be taken as the best available approximation of the optimal sparse
grid, since is always the best performing in Figure 8. For such grid and counting, we
report the convergence curves from Figure 8 for both the Gauss–Hermite and the
Gaussian Leja collocation points and add in black with filled markers the “combitec”
counting, which is more favorable to Gauss–Hermite points. The plots show, however,
that the counting method accounts for only a small fraction of the gap.

In the bottom row instead we want to investigate whether the set of multi-indices
chosen by the algorithm also has an influence - in other words, could it be that because
of the family of points, the algorithms are “tricked” to explore less effective index
sets? To this end, we redo Figure 8 by showing the convergence with respect to the
number of multi-indices in the set Λ , instead of with respect to the number of points.
The plots show that in this setting, there is essentially no difference in performance
between Gauss–Hermite, Gaussian Leja and Genz–Keister points (again, excluding
the case of Genz–Keister points for a-priori construction in the case q = 3), which
means that the sets obtained by the a-priori/a-posteriori algorithm might be different
by they are “equally good” in approximating the problem.2 Thus, the consistent
difference between Gaussian Leja, Genz–Keister and Gauss–Hermite nodes is really
due to the nestedness and granularity of the Gaussian Leja points, which appear in
conclusion to be a significantly better choice of collocation points for the lognormal
problem.

4.2 KLE vs. LCE

The second set of tests aims at assessing whether expanding the random field over the
wavelet basis (LC expansion) brings any practical advantage in convergence of the
sparse grid algorithm with respect to using the standard KL expansion. Since from
the previous discussion we know that Gaussian Leja nodes are more effective than
Gauss–Hermite and Genz–Keister points, we only consider Gaussian Leja points in
this section.

2 Incidentally, note that the a-priori algorithm doesn’t take into account the kind of univariate nodes
that will be used to build the sparse grids. Also note that of course the convergence of Gaussian
Leja with respect to either number of points or number of multi-indices is identical, given that each
multi-index adds one point.
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Fig. 10: Comparison of performance for LC and KL expansions.
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Fig. 11: Evolution of the multi-index set Λ for LC and KL expansions along iterations
of the dimension-adaptive algorithm.

Results are reported in Figure 10. In the left plot we compare the convergence of
the error versus number of points for the a-priori and a-posteriori “I-set” for LC and
KL expansion; we use the same color-code as Figure 8 (blue for prior construction,
red for the “I-set” of the a-posteriori construction) and use filled markers for LC
results and empty markers for LC results. The lines with full markers are always
significantly below the lines with empty markers, i.e., the convergence of the sparse
grid adaptive algorithm is significantly faster for the KL expansion than for the LC
expansion. This can easily be explained by the implicit ordering introduced by the
KL expansion in the importance of the random variables: because the modes of the
KL are ordered in descending order according to the percentage of variability of
the random field that they describe, they are already sorted in a suitable way for the
adaptive algorithm, which from the very start can explore important directions of
variability (although the KL expansion is optimized for the representation of the
input rather than for the output). The LC expansion instead uses a-priori choices of
the eigenmodes, and in particular batches (of increasing cardinality) of eigenmodes
are equally important (i.e., the wavelets at the same refinement level). On the other
hand, the adaptive algorithm explores random variables in the expansion order, which
means that some times the algorithm has to include “useless” modes of the LC
expansion before finding those that really matter.

Of course, a careful implementation of the adaptive algorithm can mitigate to a
certain extend this issue. In particular, increasing the size of the buffer of random
variables (cf. the description at the beginning of Section 4) improves the performance
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of the adaptive algorithm. The default number of inactive random variable is 5 - the
convergence lines in the left plot are obtained in this way. In the central plot instead
we verify that, as expected, increasing the buffer from 5 to 20 random variables
improves the performance of the sparse grid when applied to the LC case (black
line with filled markers instead of red line with filled markers). Note however that
a significant gap remains between the convergence of the sparse grid for the LC
expansion with 20 random variables buffer and the convergence of the sparse grid
for the KL expansion. This means that not only the buffer plays a role, but the KL
expansion is just a more convenient basis to work with.

This aspect is further elaborated in the right plot. In this plot we show the conver-
gence of the sparse grid approximation for KL (5-variables buffer) and LC (either
5-variables or 20-variables buffer) with respect to the number of indices in the sparse
grids (dashed lines with markers), and compare this convergence with an estimate of
the corresponding best-N-terms approximation (bNt) of the solution over Hermite
polynomials (full lines without markers); different colors identify different expan-
sions. Of course, the convergence of the best-N-terms also depends on the LC/KL
basis, therefore we show two best-N-terms convergences. The bNt has been computed
by converting the sparse grid into the equivalent Hermite expansion (see [16, 37]
for details) and then rearranging the Hermite coefficient in decreasing order. The
plot shows that the sparse grids approximation of the problem with KL expansion
is quite close to the best-N-terms convergence (blue lines), which means that there
is not much “compressibility” in the sparse grids approximation. Conversely, the
5-variables-buffer sparse grids approximation of the problem with LC expansion
is somehow far from the best-N-terms (red lines) and only the 20-variables-buffer
(black dashed line) gets reasonably close: this means that the 5-variables-buffer is
“forced” to add to the approximation “useless” indices just because the ordering of
the variables is not optimal in the LC expansion and the buffer is not large enough.

Finally, we report in Figure 11 some performance indicators for the construction of
the index set for the KL and LC cases, which give further insight into the motivations
for the superior KL performance. The figure on the left shows the growth of the size
of the outer margin of the dimension-adaptive algorithm at each iteration, where
we recall that one iteration is defined as the process of selecting one index from the
outer margin and evaluating the error indicator for all its forward neighbors; this
in particular means that the number of PDE solves per iteration is not fixed. All
three algorithms (KL, 5-variables-buffer LC and 20-variables-buffer LC) stop after
10000 PDE solves. KL has the fastest growth of the outer margin size, followed by
LC20 and then LC5, which is perhaps counter-intuitive; on the other hand, the more
indices are considered, the more likely it is to find ones “effective” in reducing the
approximation error. The figure in the center shows the growth of the number of
explored dimensions: again, KL has the quickest and steadiest growth, which means
that the algorithm favors adding new variables rather than exploring those already
available. This might be again counter-intuitive, but there is no contradiction between
this fact and the superior performance of KL: the point here is actually precisely the
fact that the LC random variables are not properly sorted, so the algorithm is tricked
into exploring those already available rather than keeping adding new ones; this is
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especially visible for the LC5 case, that shows a significant plateau in the growth of
the number of variables in the middle of the algorithm execution. The three plots on
the right finally show the largest component of multi-index ν∗N that has been selected
from the reduced margin at iteration N for the three algorithms (from the top: KL,
LC5, LC20): a large maximum component means that the algorithm has favored
exploring variables already activated, while if the maximum component is equal to 2
the algorithm has activated a new random variable (index start from 1 in the Sparse
Grids Matlab Kit). Most of the values in these plots are between 2 and 3, which
again shows that the algorithms favor adding new variables rather than exploring
those already available. Finally, we mention (plot omitted for brevity) that despite
the relatively large number of random variables activated, each tensor grid in the
sparse grid construction is at most 4-dimensional, which means that mixed effects
are considered negligible by the algorithm.

5 Conclusions

In this contribution we have investigated some practical choices related to the numer-
ical approximation of random elliptic PDEs with lognormal diffusion coefficients by
sparse grids collocation methods. More specifically, we discuss two issues, namely
a) whether it pays off from a computational point of view to replace the classi-
cal Karhunen–Loève expansion 0f the log-diffusion field with the Lévy–Ciesielski
expansion, as was advocated in [2] for theoretical purposes; b) what type of uni-
variate interpolation node sequence should be used in the sparse grid construction,
choosing among Gauss—Hermite, Gaussian Leja and Genz—Keister points. After
a short intermission, in which we briefly touch the topic of convergence of inter-
polation/quadrature of univariate/multivariate functions with these three choices of
nodes, we compare the performance of the sparse grid collocation method for the
approximation of the lognormal PDEs in a number of different cases. The numerical
findings suggest that Gaussian Leja collocation points should be employed for the
approximation of the PDE at hand by sparse grids, and that the Karhunen–Loève
expansion is more appropriate than the Lévy–Ciesielski expansion for numerical
computation purposes.
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Appendix

We show that the Karhunen–Loève expansion of the Brownian bridge discussed in
Example 1 does not satisfy the conditions of Theorem 1 for p > 0. To this end, we
first state

Proposition 3. Let (bm)m∈N be a monotonely decreasing sequence of real numbers
with limm→∞ bm = 0. Then for any θ ∈ [0,2π] we have

∑
m≥1

bm sin(mθ)< ∞.

Proof. Dirichlet’s test for the convergence of series implies the statement if there
exists a constant K < ∞ such that∣∣∣∣∣ M

∑
m=1

sin(mθ)

∣∣∣∣∣≤ K ∀M ∈ N.

Now, Lagrange’s trigonometric identity tells us that

M

∑
m=1

sin(mθ) =
1
2

cot(0.5θ)− cos((M+0.5)θ)
2sin(0.5θ)

, θ ∈ (0,2π).

Hence, since sin(m0) = sin(m2π) = 0 the statement follows easily.

Proposition 4. Given the Karhunen–Loève expansion of the Brownian bridge as in
(9), the function

kτττ(x) :=
∞

∑
m=1

τm

√
2

πm
sin(mπx), x ∈ D = [0,1],

is pointwise well-defined for τm = m1/q with q > 1 in which case (τ−1
m )m∈N ∈ `p(N)

for any p > q > 1. However, assuming that kτττ : [0,1]→ R is well-defined for a
sequence τττ = (τm)m∈N with (τ−1

m )m∈N ∈ `p(N) for a p≤ 2, then kτττ /∈ L∞(D).

Proof. The first statement follows by Proposition 3 and
√

2
πm τm = Cm1/q−1 → 0 as

m→ ∞. The second statement follows by contracdiction. Assume that kτττ ∈ L∞(D),

then also kτττ ∈ L2(D) and via ‖kτττ‖L2(D) =
1

π2 ∑
∞
m=1

τ2
m

m2 we have that τ2
m ≤ cm for a c≥

0—otherwise ‖kτττ‖L2(D) = +∞. Thus, τ
−p
m ≥ c−p/2m−p/2 and since ∑m≥1 m−p/2 <

+∞ if and only if p > 2, we end up with (τ−1
m )m∈N /∈ `2(N).

For values p > 2 we provide the following numerical evidence: we choose τm =
m1/p, i.e., (τ−1

m )m∈N ∈ `p+ε(N), ε > 0, and compute the values of the function κτττ(x)
as given in Proposition 4 in a neighborhood of x = 0 numerically. The reason we
are interested in small values of x is the fact that κτττ(x), x 6= 0, can be bounded by
1
2 cot(0.5πx)+ 1

2sin(0.5πx) by means of Proposition 3. Thus, we expect a blow-up for
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small values of x. Indeed, we observe numerically that κτττ(x) for τm = m1/p behaves
like x−1/p for small values of x > 0, see Figure 12. This implies that κτττ is unbounded
in a neighborhood of x = 0 for any of the above choices of τm and, therefore, does
not satisfy the conditions of Theorem 1.
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Fig. 12: Growth of κτττ(x) as given in
Proposition 4 for decaying x→ 0+ and
choices τm = m1/p with various values of
p—the observed growth matches x−1/p.
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