| Title | BPX preconditioners for isogeometric analysis using analysis-suitable T-splines |
| Publication Type | Report Series |
| Year of Publication | 2017 |
| Authors | Cho D., Vázquez R. |
| Series | IMATI Report Series |
| Number | 17-01 |
| Pagination | 32 p. |
| Date Published | January |
| Place Published | Pavia |
| Publisher | CNR-IMATI |
| Type of Work | Working paper |
| Abstract | We propose and analyze optimal additive multilevel solvers for isogeometric discretizations of scalar elliptic problems for locally refined T-meshes. Applying the refinement strategy in Morgenstern and Peterseim, Comput. Aided Geom. Design, 34 (2015), we can guarantee that the obtained T-meshes are p-admissible, which implies that the associated T-splines are analysis suitable. Taking advantage of the multilevel structure of p-admissible T-meshes, we develop a BPX preconditioner on the basis of local smoothing only for the functions affected by a newly added edge by bisection, and prove that our method has optimal complexity. Several numerical experiments confirm our theoretical result and also show the practical performance of the proposed preconditioner. |
| Keywords | BPX-preconditioner, Optimal multilevel preconditioning, T-splines |
| URI | http://irs.imati.cnr.it/reports/irs17-01 |
| Citation Key | irs17-01 |